新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 嵌入式模数转换器的原理及应用

嵌入式模数转换器的原理及应用

作者:时间:2009-12-24来源:网络收藏

  在实际应用中,由于输入信号的输出电阻不同,如果输出电阻过大,会引起实际测量的电压分压过小,因而引起测量值较实际值偏小;或者由于输入信号为双极性模拟信号,不能直接与微控制器相连,必须采取特殊措施,使双极性模拟信号转换为可以直接测量的非负单极性信号;还有如果输入信号幅值过大,以至于超过参考电压,也必须引入将压环节,使输入电压低于参考电压,等等,下面对以上影响逐一进行分析。
  2.1 模拟输入信号阻抗对采样的影响
  采样过程是采样电容充电,跟踪输入模拟信号电压的过程,由于采样电路存在模拟多路开关阻抗、采样开关阻抗和输入信号源阻抗,因此,其转换时间受模拟多路开关阻抗、采样开关阻抗与输入信号源阻抗的影响,模拟多路开关与输入信号源的阻抗越大则其转换时间越长。
逐次比较型A/D的输入端等效电路如下图所示:

本文引用地址:http://www.eepw.com.cn/article/152194.htm


图1 逐次比较型A/D的输入端等效电路

  其中,RIN为输入模拟信号内阻,VS为输入模拟电压信号,RSH为模拟多路开关与采样开关的等效电阻,VSH为采样电容的充电电压,由等效电路可以看出,输入模拟信号内阻越大,则采样电容充电时间越长,因此,对于采样频率要求越高的场合,要求模拟输入信号内阻必须越小,在应用时必须首先估算在规定的采样频率下,对模拟输入信号内阻的要求。由电路理论可以求得RIN所允许的最大值(假设采样时间为T):


  如果信号源内阻达不到要求,则需使用一个输出阻抗很小的缓冲器,例如可以使用电压跟随器,使信号源的输出阻抗达到所要求的输入阻抗的范围之内。
  2.2 模拟信号极性及幅值的变换
  在数据采集系统中,采集的模拟信号并非都是非负单极性信号,经常是双极性信号,因此在使用的时候,需要对模拟输入信号进行极性转换,我们可以采用运算放大器组成的线性网络来对其极性及幅值进行转换,但须注意的是在引入线性网络的同时,又引入了一定量的非线性误差,其线性网络图可用下图表示:


图2 线性网络

  只要改变电阻R1、R2、R3的大小以及它们的比例关系便可调整模拟输入信号的大小使其符合测量要求。
  下面介绍一种常用的芯片AT90S8535关于其A/D使用时应该注意的情况。
  AT90S8535是ATMEL公司生产的一款基于AVR RISC结构的,低功耗的8位单片机,其内部集成有转换器,转换器具有以下特点:
   10位分辨率;
   ±2LSB精确度;
   0.5LSB集成线性度;
   65~260μs转换时间;
   8通道;
   自由运行模式和单次转换模式;
   ADC转换结束中断;
   休眠模式噪声消除。

linux操作系统文章专题:linux操作系统详解(linux不再难懂)


评论


相关推荐

技术专区

关闭