- 提起电源设计,那肯定会提到的就是开关电源,应用范围也十分广,但是开关电源的理解可能也会难到一部分人。开关电源是利用电子开关器件比如晶体管,MOS管等来控制电路,使得电路产生不断的接通与断开,让电子开关器件对输入的电压脉冲调制,就可以实现升压,降压的电压调换。它的优点就是电压输入范围宽,转换范围也宽,同时效率高,体积小,所以在电子硬件中应用范围非常广,理解它就显得很重要了。对于开关电源的理解如果能明白一两个开关电源的电路原理,就可以达到事半功倍的效果,就跟平时做数学例题一样。以下是几个开关电源电路的例子。(
- 关键字:
开关电源 电路设计
- 大家好,我是山羊君Goat。提起电源设计,那肯定会提到的就是开关电源,应用范围也十分广,但是开关电源的理解可能也会难到一部分人。开关电源是利用电子开关器件比如晶体管,MOS管等来控制电路,使得电路产生不断的接通与断开,让电子开关器件对输入的电压脉冲调制,就可以实现升压,降压的电压调换。它的优点就是电压输入范围宽,转换范围也宽,同时效率高,体积小,所以在电子硬件中应用范围非常广,理解它就显得很重要了。对于开关电源的理解如果能明白一两个开关电源的电路原理,就可以达到事半功倍的效果,就跟平时做数学例题一样。以下
- 关键字:
开关电源 电路设计
- 相信很多工程师在使用电子测量仪器的时候大家都了解MOS管,下面一起看看MOS管究竟是什么。1. MOS的三个极怎么判定?MOS管符号上的三个脚,辨认要抓住关键地方 :G极,不用说比较好认。S极,不论是P沟道还是N沟道,两根线相交的就是。D极,不论是P沟道还是N沟道,是单独引线的那边。2. 是N沟道还是P沟道?三个脚的极性判断完后,接下就该判断是P沟道还是N沟道了:当然也可以先判断沟道类型,再判断三个脚极性。判断沟道之后,再判断三个脚极性。3. 寄生二极管的方向如何判定?接下来,是寄生二极管的方向判断:它的
- 关键字:
MOS管 电路设计 模拟电路
- 常见低通滤波电路CLC π型滤波器1、工作原理介绍a.输入正脉冲时,先给C1充电,充电电流为ic1,迅速充到脉冲的峰值电压Vi,同时电感器L中也有线性增长的电流,并在L中储存了磁能,随着电流的增长,储存的磁能越来越多,电容器C2通过电感L也充上了电压,充电电流为ic2,C2和C1上的电压基本相等,负载RL中的电流IRL也是由输入脉冲供给。b. 输入正脉冲消失,负载RL的电流由两路提供,一路是C2放电提供的电流为-ic2,,另一路是由电感L储存的磁能转换成电能,并与C1上的电压串联后提供-ic1。负载RL中
- 关键字:
通滤波电路 电路设计
- 你发现没有?在一些大功率开关电源场合总会看到电源输入端有一个继电器,它有什么用呢?原来继电器接在输入端,是用来短接软启动热敏电阻,降低静态功耗的。对于有些应用来说,降低功耗特别关键,在NTC热敏电阻上的功耗不能忽略不计。这时候可以在NTC热敏电阻上并联一个继电器。电路如下:VCC是辅助源电路,比如5V或12V。继电器初始是断开的。当VCC逐渐达到自身电压的时候,稳压二极管D1导通,三极管Q1打开,继电器K1闭合,相当于把限流NTC热敏电阻R1短路。开关电源开启瞬间,会给整流桥后的大电解电容充电,有很大的瞬
- 关键字:
继电器 电路设计
- 以下文章来源于面包板社区 ,作者wuliangu问题现象:如下图,大电池BAT1和小电池BAT2一起给系统供电,当用到低电状态拔下大电池时,系统直接关机。客户要求:当拔掉大电池后,系统还能工作一段时间。问题分析:从电路来看,大电池和小电池是并联在一起的,它们充电一起充,放电一起放,到低电状态时两种电池都电压较低,所以系统供电不足直接关机。设计思路:为符合客户要求,设计成当大电池接上时,就让小电池不供电,就是说当放电时只有大电池放电,当充电时两者都能充电。设计要求:从PCB板布局空间和生产成本上要求电路尽量
- 关键字:
PCB 电路设计
- 提到恒流电路,作为硬件研发工程师相信不会陌生,在LED驱动相关项目设计的时候,经常会遇到此类电路问题。对于恒流电路,一般采用的方法是采用两个三极管的互相钳制电路或者是采用运放搭建的精密恒流电路,这两种的恒流电路原理图今天简单介绍下。1.三极管恒流电路三极管恒流电路三极管的恒流电路,主要是利用Q2三极管的基级导通电压为0.6~0.7V这个特性。当Q2三极管导通,Q1三极管基级电压被拉低而截止,负载R1不工作;负载R1流过的电流等于R6电阻的电流(忽略Q1与Q2三极管的基级电流),R6电阻的电流等于R6电阻两
- 关键字:
恒流电路 三极管 电路设计
- 一、什么是浪涌电流浪涌电流是指电源接通瞬间或者电路出现异常情况下产生的远大于稳态电流的峰值电流或者过载电流,浪涌也叫突波。本质上讲,浪涌是发生在仅仅百万分之一秒时间内的一种剧烈脉冲。由于电路本身的非线性有可能高于电源本身的脉冲;或者由于电源或电路中其它部分受到本身或外来尖脉冲干扰以及来源于外部因素,如雷电、ESD,它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等等。而浪涌电流保护就是利用非线性元器件对高频(浪涌)的敏感设计的保护电路,简单而常用的是并联大小电容和串联电感。供电系统浪涌的来源类
- 关键字:
浪涌电流 电路设计
- 如何从MOS管的驱动波形来判断驱动好不好,到底是哪里出了问题?本文分享几种常见的MOS管驱动波形。基础知识一般认为三极管是电流驱动型,所以驱动三极管,要在基极提供一定的电流。一般认为MOS管是电压驱动型,所以驱动MOS管,只需要提供一定的电压,不需要提供电流。实际是这样吗?由于MOS管的制作工艺,决定了本身GS之间有结电容以及GD之间有弥勒电容,DS也有寄生电容,这使得MOS管的驱动变得不那么简单。备注:如下图为软件绘制,示意图仅供参考,便于理解。1、MOS正常驱动波形描述:MOS一般是慢开快关,上升沿相
- 关键字:
MOS管 电路设计
- IGBT,中文名字为绝缘栅双极型晶体管,它是由MOSFET(输入级)和PNP晶体管(输出级)复合而成的一种器件,既有MOSFET器件驱动功率小和开关速度快的特点(控制和响应),又有双极型器件饱和压降低而容量大的特点(功率级较为耐用),频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内。理想等效电路与实际等效电路如图所示:IGBT 的静态特性一般用不到,暂时不用考虑,重点考虑动态特性(开关特性)。动态特性的简易过程可从下面的表格和图形中获取:IGBT的开通过程IGBT 在开通过程中,
- 关键字:
IGBT 电路设计 驱动电路
- 在PCB设计中,焊盘是一个非常重要的概念,PCB工程师对它一定不陌生。不过,虽然熟悉,很多工程师对焊盘的知识却是一知半解。今天,电路菌带大家来了解下焊盘的种类,以及在PCB设计中焊盘的设计标准。焊盘,表面贴装装配的基本构成单元,用来构成电路板的焊盘图案(land pattern),即各种为特殊元件类型设计的焊盘组合。焊盘用于电气连接、器件固定或两者兼备的部分导电图形。PCB焊盘的种类一、常见焊盘1、方形焊盘——印制板上元器件大而少、且印制导线简单时多采用。在手工自制PCB时,采用这种焊盘易于实现。2、圆形
- 关键字:
PCB 电路设计
- PCB常见布线规则(1) PCB板上预划分数字、模拟、DAA信号布线区域。(2)数字、模拟元器件及相应走线尽量分开并放置于各自的布线区域内。(3) 高速数字信号走线尽量短。(4) 敏感模拟信号走线尽量短。(5)合理分配电源和地。(6) DGND、AGND、实地分开。(7) 电源及临界信号走线使用宽线。(8)电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。(9)数字电路放置于并行总线/串行DTE接口附近,DAA电路放置于电话线接口附近。(10)小的分立器件走线须对称,间距比较密的SMT焊盘引线应从
- 关键字:
PCB 电路设计
- 一、RCD钳位电路反激式开关电源的RCD钳位电路由电阻R1、电容C1和二极管D1组成,如下图,其中:Lk为变压器的漏感,Lp为变压器原边绕组电感、Cds为Q1的寄生电容、T1为变压器、Q1是开关管、D2是输出整流二极管,E1是输出滤波电容。变压器漏感Lk与原边电感Lp串联,原边电感Lp与变压器T1并联。原边电感Lp的能量可通过理想变压器T1耦合至副边,给后端负载提供能量。但变压器漏感Lk的能量无法耦合至副边,只能通过寄生电容释放能量,引起的尖峰电压,可以通过电阻R1吸收回路吸收能量。1、工作原理为了简化,
- 关键字:
RCD钳位电路 电路设计
- 电压控制型电流源(VCCs)广泛用于医疗器械、工业自动化等众多领域。VCCs 的直流精度、交流性能和驱动能力在这些应用中至关重要。本文分析了增强型 Howland 电流源(EHCS)电路的局限性,并阐述了如何利用复合放大器拓扑进行改进,以实现高精度、快速建立的±500 mA电流源。增强型Howland电流源图1所示为传统的Howland电流源(HCS)电路,而公式1显示了如何计算输出电流。如果R2足够大,输出电流将保持恒定。图1.Howland电流源电路虽然较大的R2会降低电路速度与精度,但在反馈路由中插
- 关键字:
电路设计 电压控制 VCCs
大电容充电的“控制器”电路设计介绍
您好,目前还没有人创建词条大电容充电的“控制器”电路设计!
欢迎您创建该词条,阐述对大电容充电的“控制器”电路设计的理解,并与今后在此搜索大电容充电的“控制器”电路设计的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473