dnn 文章
- Facebook AI 近期更新博客介绍了一篇新论文,即研究人员通过实验发现「易于解释的神经元可能会阻碍深层神经网络的学习」。为了解决这些问题,他们提出了一种策略,通过可伪造的可解释性研究框架的形式来探讨出现的问题。 人工智能模型到底「理解」了什么内容,又是如何「理解」的呢? 回答这个问题对于改进人工智能系统来说至关重要。而不幸的是,计算机科学家解释深层神经网络(DNN)的能力远远落后于我们用它们实现有用结果的能力。 一种常见的理解DNN的方法集中在单个神经元的属性上,例如,寻找出一个单独的神经元,
- 关键字:
Facebook AI DNN
- Mentor®, a Siemens business 今日宣布 Chips&Media™ 已成功部署 Mentor Catapult™
HLS 平台,将使用深度神经网络 (DNN) 算法设计和验证其 c.WAVE 计算机视觉 IP 的实时对象检测。Chips&Media
是一家面向片上系统 (SoC) 设计高性能、高质量视频 IP 的领先供应商,其产品广泛应用于汽车、监控和消费电子领域。 Chips&Media
需要通过减少功能验证时间、时序收敛、自定义和最终优
- 关键字:
Mentor DNN
- Gartner今天强调了最重要的几大战略物联网(IoT)技术趋势,并称这些趋势将推动2018年至2023年期间的数字业务创新。 Gartner研究副总裁Nick Jones表示:“物联网将继续为未来十年的数字业务创新提供新的机遇,其中很多创新将通过新技术或改进技术实现。那些掌握了创新物联网趋势的CIO们才有机会在其业务中领导数字化创新。” 此外,CIO们应该确保他们拥有必要的技能和合作伙伴,以支持关键的新兴物联网趋势和技术,因为到2023年CIO们负责的端点数量将是今年的3倍多。 Gartner
- 关键字:
DNN 物联网(
- 深度神经网络在很多任务上都已取得了媲美乃至超越人类的表现,但其泛化能力仍远不及人类。德国蒂宾根大学等多所机构近期的一篇论文对人类和 DNN 的目标识别稳健性进行了行为比较,并得到了一些有趣的见解。机器之心对该论文进行了编译介绍。 摘要 我们通过 12 种不同类型的图像劣化(image degradation)方法,比较了人类与当前的卷积式深度神经网络(DNN)在目标识别上的稳健性。首先,对比三种著名的 DNN(ResNet-152、VGG-19、GoogLeNet),我们发现不管对图像进行怎样的操
- 关键字:
DNN 深度神经网络
- 概要:人工智能交融了诸多学科,而目前对人工智能的探索还处于浅层面,我们需要从不同角度和层次来思考,比如人工智能和大脑的关系。
神经元
在深度学习领域,神经元是最底层的单元,如果用感知机的模型, wx + b, 加上一个激活函数构成了全部,输入和输出都是数字,研究的比较清楚。别的不说,在参数已知的情况下,有了输入可以计算输出,有了输出可以计算输入。
但在神经科学领域,神经元并不是最底层的单位。
举例来说,有人在做神经元膜离子通道相关的工作。一个神经元的输入,可以分为三部分,从其他
- 关键字:
DNN 深度学习
dnn介绍
您好,目前还没有人创建词条dnn!
欢迎您创建该词条,阐述对dnn的理解,并与今后在此搜索dnn的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473