首页  资讯  商机   下载  拆解   高校  招聘   杂志  会展  EETV  百科   问答  电路图  工程师手册   Datasheet  100例   活动中心  E周刊阅读   样片申请
EEPW首页 >> 主题列表 >> 特征融合

特征融合 文章

一种改进的YOLOv4-tiny车辆目标检测方法*

  • 伴随深度学习的不断发展,深度学习的目标检测方法被广泛应用。基于特征融合的思想,本文提出了一种改进的YOLOv4-tiny目标检测方法,通过添加卷积模块及调整部分超参数对其网络架构进行优化,以实现对道路车辆目标的快速检测、识别和定位。首先为了改善YOLOv4-tiny网络对小目标类型检测精度差的问题,基于特征金字塔网络对第二标度输出层的最后一个CBL输出特征与网络中第二个CSP输出特征进行融合,并在原有网络的基础上增加52×52的标度输出;其次,利用迁移学习权重在自己采集的数据集上进行实验,训练得出合适的权
  • 关键字: 车辆检测  特征融合  改进的YOLOv4-tiny  目标检测  202109  
共1条 1/1 1

特征融合介绍

您好,目前还没有人创建词条特征融合!
欢迎您创建该词条,阐述对特征融合的理解,并与今后在此搜索特征融合的朋友们分享。    创建词条

热门主题

树莓派    linux   
关于我们 - 广告服务 - 企业会员服务 - 网站地图 - 联系我们 - 征稿 - 友情链接 - 手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
备案 京ICP备12027778号-2 北京市公安局备案:1101082052    京公网安备11010802012473