新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > PTN时钟同步技术及应用

PTN时钟同步技术及应用

作者:时间:2010-06-08来源:网络收藏

3 时间同步技术

时间同步技术是频率同步的进一步发展。分组时间同步技术采用分组协议数据单元作为时钟或时间信息的载体,是实现主时钟与从时钟时间之间同步比较好的方式。其基本原理如图3所示。

3.1 网络时间协议

在IEEE 1588v2技术出现以前,在分组网络中用于时间同步的协议主要的有3种:时间协议、日时协议和网络时间协议(NTP)。NTP由纯软件实现,精度比较低。目前广泛使用的NTPv3可以达到10 ms左右的同步精度。IETF正在进行NTPv4的标准工作,支持IPv6和动态发现服务器,预计同步精度可达到10 μs级。NTP的稳定性和精度还不能满足电信网的高要求。

3.2 1588v2协议

3.2.1 1588v2协议的实现原理

1588v2是未来统一提供时间同步和频率同步的方法,能适合于不同传送平台的局间时频传送,既可以基于1588v2的时间戳以基于分组的时间传送(TOP)方式单向传递频率,也可使用IEEE 1588v2的协议实现时间同步,在设备中得到广泛应用。

1588v2时间同步的核心思想是采用主从时钟方式,对时间信息进行编码,利用网络的对称性和延时测量技术,通过报文消息的双向交互实现主从时间的同步。

1588v2协议原理如图4所示。图中,Delay=(T2-T1+T4-T3)/2,Offset=(T2-T1-T4+T3)/2。
主时钟(Master)与从时钟(Slave)之间发送Sync、Follow_Up、Delay_Req、Delay_Resp消息。通过T1、T2、T3、T4这4个值,主从时种可计算出Master与Slave之间延迟(Delay),以及Master与Slave的时间差(Offset)。

同步消息类型有一般消息和事件消息。一般消息(例如Follow_Up)本身不进行时戳处理,它可以携带事件消息(如Sync)的准确发送或接收时间,还具有完成网络配置、管理,或PTP节点之间通信的功能。事件消息本身需要进行时戳处理,并可携带或不携带时戳。从时钟根据事件消息的时戳或由一般消息携带的时戳计算路径延迟和主从时钟之间的时间差。

3.2.2 时钟类型

1588v2基于Ethernet/IPv4/v6/UDP等协议之上,共定义了3种基本时钟类型:普通时钟(OC)、边界时钟(BC)和透明时钟(TC)。

普通时钟是单端口器件,可以作为主时钟或从时钟。一个同步域内只能有唯一的主时钟。主时钟的频率准确度和稳定性直接关系到整个同步网络的性能。一般可考虑PRC或同步于全球定位系统(GPS)。从时钟的性能决定时戳的精度以及Sync消息的速率。

边界时钟是多端口器件,可连接多个普通时钟或透明时钟。边界时钟的多个端口中,有一个作为从端口,连接到主时钟或其他边界时钟的主端口,其余端口作为主端口连接从时钟或下一级边界时钟的从端口,或作为备份端口。

透明时钟连接主时钟与从时钟,它对主从时钟之间交互的同步消息进行透明转发,并且计算同步消息(如Sync、Delay_Req)在本地的缓冲处理时间,并将该时间写入同步消息的CorrectionField字节块中。从时钟根据该字节中的值和同步消息的时戳值Delay和Offset实现同步。TC又可分为E2E TC和P2P TC。

3.2.3 1588v2协议的延迟

延迟是影响1588v2精度的主要因素之一。延迟主要有时戳处理延迟、节点缓冲延迟和路径延迟。

(1)时戳处理延迟

1588v2的时戳处理由硬件完成,时戳处理单元的位置处于物理层与MAC层之间。如图5所示。

硬件时戳处理可以补偿1588v2协议帧通过协议栈时消耗的时间,保证端口消息发送和接收时戳的精度。

(2)节点缓冲与路径延迟

1588v2定义两种透明时钟,用于节点缓冲延迟补偿:E2E TC和P2P TC。对于传输路径的补偿,有两种方式:时延请求反应方式和点对点时延方式。

时延请求反应方式结合E2E TC使用。TC只需要在入口和出口处在报文上标记处理时戳,时间延迟补偿的计算全部由Slave完成。

点对点时延方式结合P2P TC使用。TC参与端点间的时间延迟计算,每个端点分别与TC交互,并计算P2P之间的时间延迟。Slave利用计算结果计算延迟补偿。

3.2.4 1588v2协议在上的实现

1588v2的同步精度在实际网络部署中受到多方面因素的影响,复杂网络环境(如微波和交换网络的混合组网)的使用目前还在研究当中。在纯分组的测试网络中,1588v2可以达到100 ns级的精度,但是由于网络时延复杂性和1588v2的双向路径非对称性的不可控,导致单纯依赖1588v2协议和数理分析算法去适应网络环境,存在着难以预知的风险。例如在网络负荷较重时,由于单纯1588v2报文发包频率很高,在网络中1588v2报文容易受到业务报文的影响,对时间延迟精度产生很大的影响。而降低报文发包频率,又会导致时间收敛速度较慢。另外在实际工程中,需要对1588v2算法进行双向路径非对称性补偿。非对称性主要来源于光纤不对称。测量光纤不对称通常做法是采用昂贵的时间同步测试仪和示波器进行时间误差测量,再进行非对称性时延补偿。由于接入节点数量多,工作量大且需要专业人员操作,而且时间同步测试仪和示波器等相关仪器工程人员携带不方便,难以普遍推广实施,导致1588v2在工程可实施性上存在争论。

中兴通讯的PTN产品针对上述问题,提出了同步以太网基础的1588v2时间传递方案。方案核心思想是建立时钟和时间分离且高度可控的网络,排除了不可预知的风险。在同步以太网物理层稳定频率同步的基础上实施1588v2,有助于时间同步的快速收敛,而且可以降低1588v2报文发送频率,在网络负荷较重时,也不影响时间精度,使PTN时间同步具有更高可靠性和更高精度。为了解决PTN非对称性测量的工程问题,接入层PTN设备上集成了时间误差测量功能,迅速准确,不需要专业仪表,容易操作实施。

4 典型应用

4.1 同步以太网应用

同步以太网的组网应用和SDH类似,支持环网和树状网组网,通常由无线网络控制器(RNC)提供时钟源,时钟信息通过同步以太网传送后到达各个基站,从而保持全网同步状态。在树状组网中,无时钟路由保护;在环网组网中,如果当前时钟路由发生故障,通过告警、SSM信息等相关网元可以从其他方向跟踪源时钟,从而实现时钟路由保护。同步以太网组网实例如图6所示。



关键词: PTN

评论


相关推荐

技术专区

关闭