新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于DSP/FPGA的超高速跳频系统基带设计

基于DSP/FPGA的超高速跳频系统基带设计

作者:时间:2008-12-05来源:网络收藏

基于DSP/FPGA的超高速跳频系统基带设计与实现

基于DSP/FPGA的超高速跳频系统基带设计与实现

  为了适应复杂的数字接口,在中设计了DDS Controller逻辑,完成了对所有时序和数据格式的转换。仅通过读写DDS Controller中的几个寄存器就可以实现对DDS的所有操作。DDS的输出端采用了互补电流输出,经过变压器耦合并通过低通滤波器后得到基频信号。

  3.2 调制解调逻辑设计

  本系统采用了2FSK调制方式。2FSK调制实际上就是根据二进制码流的极性输出频率f0(频点0)或频率f1(频点1),跳频通信系统根据跳频图案决定载波频率,但归根结底就是改变DDS的输出信号频率。

  本设计采用了相干解调方式,图5给出的正交NCO相干解调逻辑图。

  图5中ACC为32bit相位累加器,Sub32提供π/2的相位平移得到Q支路的波表地址,Lanch32的作用是使相位累加器的输出结果延时一个时钟周期,保持I、Q支路严格同步,因为Sub32的运算会使Q支路延时一个时钟周期。双口ROM存储余弦表,同时产生I支路和Q支路的波形。

  正交NCO、数字混频器、低通滤波和采样调整模块共同构成了解调单元DeModulationLogic。DeModulationLogic在FPGA系统中的位置如图6所示。

基于DSP/FPGA的超高速跳频系统基带设计与实现

基于DSP/FPGA的超高速跳频系统基带设计与实现

  3.3 跳频序列的控制设计

  跳频序列是决定跳频通信系统跳频图案的伪随机序列。对跳频序列的要求是循环周期长、最小码距大、随机性强等。本设计采用了理论研究最完备、易于产生的m序列作为跳频序列,在中通过软件实现对偶频带法对最小跳频间隔的控制,DSP判断相邻两次生成的m序列的码距是否符合要求。若不符合最小码距的要求,则跳到此次生成码的对偶频道上去。如图7所示。

  3.4 同步设计

  同步是跳频通信系统的核心技术。跳频通信系统的同步包括载波同步、位同步和帧同步(跳频图案同步)。

  由于本设计采用2FSK调制解调方式,所以仅需要接收端提供一个与所接收到的载波信号同频的本地载波信号即可,因而可以不进行载波跟踪,直接通过设置频率合成器的频率控制字实现收发同频即可实现载波同步。

  位同步是以解调电路为基础的。由于码速率较高,位同步运算大都在FPGA中通过硬件完成。

基于DSP/FPGA的超高速跳频系统基带设计与实现

  图8(a)是没有同步时的示波器波形图,图8(b)是同步后的示波器波形图。通道一(上方)是发送端的发送脉冲,通道二(下方)是接收端的位同步脉冲。位同步以后,接收端的位同步脉冲和发射端的发射脉冲完全对齐,波动范围不超过1μs, 最大偏移不超过码元宽度的4%。图中,时间:5μs/格;电压2V/格(上);电压2V/格(下)。

  跳频图案同步是跳频通信系统中特有的同步概念,它是指接收方的跳频图案与发射方跳频图案保持一致的过程或状态。在跳频通信系统中,帧同步和跳频图案同步概念相似,有时候不加区分, 本设计选用13位巴克码{1,1,1,1,1,-1,-1,1,1,-1,1,-1,1}作为帧同步信号。图9是FPGA中信号跳频图案同步示意图。



关键词: DSP FPGA 基带

评论


相关推荐

技术专区

关闭