新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于零中频接收机的技术挑战及解决方案

基于零中频接收机的技术挑战及解决方案

作者:时间:2013-11-05来源:网络收藏
68, 68, 68); line-height: 22px; text-indent: 2em; font-family: 宋体, Georgia, verdana, serif; ">2.2 的挑战及解决方案

本文引用地址:http://www.eepw.com.cn/article/228009.htm

到目前为止,还只用于手持设备上,在基站上还没有应用,原因是在架构上,有很多无可避免的噪声源没有办法得到抑制,本文将重点讨论闪烁噪声(1/f),直流偏置(DCoffset);I/Q 不平衡;偶次谐波。

2.2. 1 闪烁噪声(1/f)

闪烁噪声是有源器件固有的噪声,其大小随频率降低而增加,主要集中在低频段,闪烁噪声对搬移到零中频的基带信号产生干扰,降低信噪比,在通常的零中频中,增益都放在基带,射频部分(LNA和解调器)的增益大概在30dB左右,所以下变频信号大概会在几十微伏,所以射频输入级(LNA,滤波器等等)的噪声就变得非常重要。

为了更好理解闪烁噪声,我们可以来分析一个独立的MOS管,在输入闪烁噪声和纯热噪声情况下的噪声恶化情况,对一个典型的亚微粒MOS管,计算带宽为1MHz情况下的闪烁噪声:(3)

基于零中频接收机的技术挑战及解决方案

计算从10Hz到200KHz的带宽内的闪烁噪声如下

基于零中频接收机的技术挑战及解决方案

如果只考虑热噪声

基于零中频接收机的技术挑战及解决方案

如果考虑闪烁噪声的情况下,噪声增加了Pn1/Pn2=16.9dB, 而在超外差结构中,闪烁噪声将无关紧要,因为信号主要在中频进行放大。

减少闪烁噪声的方法(3):下变频器后的链路工作在低频,这样可以选择双极性晶体管,从而能够降低闪烁噪声;另外采用高通滤波器和类直流校准也能够抑制低频的噪声。

2.2. 2 直流偏置(DC-offset)

由于零中频接收机转换带宽信号到零中频,大量的偏置电压会恶化信号,更严重的是,直流偏置信号会使混频后级饱和,如饱和中频放大器,ADC等。

基于零中频接收机的技术挑战及解决方案

为了理解直流偏置的起源和影响,我们可以参照图四的接收通道进行说明。

如图四(a)所示, 本振口,混频器口,LNA之间的隔离度不好,Lo(本振信号)可以直接通过LNA和混频器,我们叫做“本振泄露”, 这种现象是由于芯片内部的电容及基底耦合的,耦合的Lo信号经过LNA到达混频器,和输入的Lo信号混频,叫做“自混频”,这样会在 C 点产生直流成分;近似的情况如(b),从 LNA出来的信号耦合到混频器的本振输入口,从而产生了直流分量;

为了保证ADC能够采样出射频端口微伏级的电压,通常需要整个链路增益在100dB以上,其中25-30dB的增益来自LNA和混频器的贡献。

基于如上分析,对于自混频产生的直流偏置,我们可以做一个大概的估算,假设混频器的Lo输入信号为0.63Vpp(等同于在50ohm系统中的0dBm),通常情况下是-6dBm--+6dBm,假设隔离度为60dB,所以图五(a),考虑到30dB的射频增益,混频器的输出直流信号大概为10mVpp,在现代通信系统中,在LNA输入的有用信号可以低至30uVrms, 为了能够采样有用信号,需要中频放大70dB左右,10mV的直流电压也会放大70dB,会导致混频器后的基带放大器器件饱和,产生失真,即使基带放大器是理想的放大器,也需要一个超高动态范围的ADC才能解决直流偏置问题,而这种动态范围的ADC在实际上是不可实现的。

怎样解决零中频接收机的直流偏置问题呢?最简单的方案是采用交流耦合的方式,比如加一个高通滤波器,然而随机二进制数据的频谱在DC会呈现出一个峰值,很多仿真证明,为了不恶化信号,高通滤波器的频率截止点必须低于数据速率的0.1%, 如果是GSM信号,其数据速率为200K,这要要求滤波器的截止频率为200Hz左右,这样小的值会导致,1:如果直流偏置变化,其响应会非常慢,2:需要非常大的电容和电阻, 解决的办法是采用在直流附近最小化信号能量的调制方式,比如UMTS制式的BPSK调制方式。

另外一种常用的方法是通过算法校准的方式消除直流偏置,如图五所示的架构是TI(德州仪器)的盲校算法,通过计算122.88MHz时钟周期的直流偏置量,每1.067ms输入信号实时抵消直流偏置。

直流累加

基于零中频接收机的技术挑战及解决方案



关键词: 零中频 接收机

评论


相关推荐

技术专区

关闭