新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 电池基电源管理系统的设计分析

电池基电源管理系统的设计分析

作者:时间:2012-02-02来源:网络收藏
较大的磁芯材料损耗。

  LDO稳压器

  LDO稳压器(图3)是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。差分放大器的一个输入监控输出比率。差分放大器的第2个输入来自稳定的电压基准。若输出电压相对基准电压趋向于升高,则加到功率半导体的驱动改变,以保持恒定输出电压。

电池基电源管理系统的设计分析

  LDO借助输入和输出电压之间的差,使IC稳定输出电压。LDO调整输出电压直到它的输入和输出接近于相互之间电压降为止。理想的电压降应尽可能的低,以使功耗最小和效率最高。

  LDO稳压器的压降决定最低可用电源电压。对于标定的3~5.5V输入可标定LDO提供3.3V输出。在150mA,100mV压降正在变得更标准化。

  现有的LDO稳压器可提供可调或固定输出电压。固定输出型LDO的输出电压变化为±2%~±6%,通常提供1~5V范围的输出。

  输出噪声是LDO稳压器需考虑的另一问题。通常在宽范围内额定指标是微伏rms。

电荷泵

  电荷泵称为开关电容式电压变换器,是一种利用所谓的“快速”(flying)或“泵送”电容(而非电感或变压器)来储能的DC-DC(变换器)。它们能使输入电压升高或降低,也可以用于产生负电压。其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输入电压以一定因数(0.5,2或3)倍增或降低,从而得到所需要的输出电压。这种特别的调制过程可以保证高达80%的效率,而且只需外接陶瓷电容。由于电路是开关工作的,电荷泵结构也会产生一定的输出纹波和EMI(电磁干扰 )

  电荷泵可分为:1开关式调整器升压泵 、2无调整电容式电荷泵 、3可调整电容式电荷泵。

  电荷泵(开关电容器)IC提供dc-dc电压变换,是用开关网络充电和放电一个或多个电容器。开关网络在电容器的充电和放电状态之间触发。

  如图4所示,电容器C1穿梭充电,电容器C2保持电荷和滤波输出电压。

电池基电源管理系统的设计分析

  基本的电荷泵缺乏稳压,通常要增加线性稳压或电荷泵调制。线性稳压具有最低的输出噪声,所以能提供较好的性能。电荷泵调制(控制开关电阻)对于给定的裸片大小(或成本)能提供额外输出电流,因为稳压器IC不需要包含串联通路晶体管。

  电荷泵的主要优点是消除了与电感器或变压器有关的磁场和EMI。存在的一个可能的EMI源是在输入源或另外电容器连接不同电压时,高充电电流流到电容器C1。稳定的电荷泵降压效率大于LDO,但小于电感开关稳压器。

  选择正确的稳压器拓扑

  合适的电压稳压器拓扑选择从来自的输入电压和负载所需的电压和电流着手。在已知这些参数后,就可开始选择最佳电压稳压器IC的进程。

  关键的参数包括:

  最大输出电流:电压稳压器必须在所有工作条件下能提供负载所需的最大电流。一些稳压器可提供高达10A的电流,而另外一些稳压器仅给出200~300mA。

  最大输出电压:所需的输出电压取决于具体应用。某些拓扑可提供20V或更高电压,而另外拓扑提供10V以下电压。来自的输入电压也可影响电压稳压器所产生的最大电压。

  效率:效率是输出功率与输入功率之比,效率主要影响可用的寿命。效率越高,寿命越长。

  大小和重量:物理尺寸和重量主要取决于电压稳压器所需的外部元件数,电压稳压器会影响电路板空间和设备尺寸。

  EMI:电路板布线或电压稳压器中的开关电路可能引起传导和辐射EMI。



关键词: 电池 电源管理

评论


相关推荐

技术专区

关闭