新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 电磁感应式无线充电核心技术(二):数据传输

电磁感应式无线充电核心技术(二):数据传输

作者:时间:2013-09-09来源:网络收藏

前面我们讲解到了(一):谐振控制,下面我们将继续探讨的数据传输部分。

数据传输

电力系统中最重要的技术问题就是必需要能识别放置于发射线圈上的物体,感应电力就与烹调用的电磁炉一样会发射强大的电磁波能量,若直接将此能量打在金属上则会发热造成危险;为解决此问题各厂商发展可识别目标之技术,经过几年的发展确认藉由受电端接收线圈反馈讯号由供电端发射线圈接收讯号为最好的解决方式,为完成在感应线圈上数据传输的功能为系统中最重要的。在传送电力之感应线圈上要稳定传送数据非常困难,主要载波是用在大功率的电力传输,其会受到在电源使用中的各种干扰状况,另外先前也提到这是一个变频式的控制系统,所以主载波工作频率也不会固定。因为困难所以先前厂商推出的技术有除了感应线圈供应电力外,另外在建立一个无线通信频道,例如红外线、蓝芽、RFID标签、WiFi…等,但外加这些模块已经违背的成本原则,这个产品为充电器,成本一定要控制的相当低才可被市场所接受,所以利用感应线圈本身作数据传输为业界必采用的方式。

  利用感应电力之线圈进行数据传输会遇到两个问题,就是如何发送数据与如何接收数据,原理同RFID的数据传输方式,供电端线圈上发送主载波打到受电端线圈上,再由受电端电路上控制负载变化来进行反馈,在现行的感应电力设计中为单向传输,也就是电力能量(LC振荡主载波)由供电端发送到受电端,而受电端反馈资料码到供电端,而受电端收到供电端的能量只有强弱之分没有内含通讯成份,这个数据码传送的机制也只有受电端靠近后收到电力能量才能反馈,在供电端未提供能量的状况下并无法进行数据码传送,乍看来只是半套的通讯机制在感应电力系统中却非常实用,因为满足了系统所需要的功能:供电端辨识受电端后开启发送能量进行电力传输,受电端传回电力状况由供电端进行调整。

  参考图(六)中qi规格书中受电端接收电力与数据反馈架构,其中可以看到有两种设计架构,分别是电阻式与电容式两种。电阻式调制反馈讯号的方式源自被动式RFID技术,利用接收线圈阻抗切换反馈讯号到发射线圈进行读取,运用在感应式电力上由美国ACCESS BUSINESS GROUP (Fulton) 所申请之美国专利公开号20110273138 WIRELESS CHARGING SYSTEM (台湾公开号201018042 系统)内容中有提到系利用切换开关位于接收端整流器后方的负载电阻,即图(六)中的Rcm使线圈上的阻抗特性变化反馈到供电线圈上,经由供电线圈上的侦测电路进行解析变化,再有供电端上的处理器内软件进行译码动作。参考图(七)在专利说明书中,Fig.7中表示供电线圈上的讯号状况,当Rcm上的开关导通时,拉低受电线圈上的阻抗反馈到供电线圈上使其振幅变大,在编码的方式采用UART通讯方式中asynchronous serial format(异步串联格式)进行编码,即在固定的计时周期下该时间点是否有发生调制状态变化进行判读逻辑数据码,但这个编码方式可以发线将会有一段周期的时间持续在调制状态。参考图(八)为qi规格书中的数据传输格式,可以看到是由一个2KHz的计时频率进行数据调制与译码的数据传送频率,经由推算在一个调至状态下最长会有一个周期的时间在调制状态。UART通讯方式中调制状态的长短并没有影响到系统中的功能,但在感应式电力系统中调制状态会影响到供电的状态,原因是供电端的主载波本身是用来传送电力的,透过供电端与受电端线圈耦合的效果能传送强大的电流驱动力,而受电端的电阻负载需要承受驱动电流进行反馈,当功率加大后在Rcm上所承受的功率也会增加,且在调制期间原要通往受电端输出的电流也会被Rcm所分流,所以在调制期间受电端的输出能力会被损耗;另外调制的时间会因为传送频率提高而缩短,因为在感应式电源系统中主载波的工作频率受于组件与电磁干扰法规限制下只能在较低的频率下运作(约100~200KHz),而数据是靠主载波上的调制状态传送,所以数据传送频率需要远低于主载波频率下才能顺利运作,在前述条件的冲突下可以发现当感应电力系统设计的功率提高后,电阻负载的数据调制方式为不可行,因为在调制电路上的电阻器会有相当长的周期在导通的状态造成功率消耗。

  

(电子工程专辑)

  图(六)qi规格书中受电端接收电力与数据反馈架构

  

(电子工程专辑)

上一页 1 2 3 4 5 下一页

评论


相关推荐

技术专区

关闭