新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 兼顾处理器效能与功耗 大小核设计架构突起

兼顾处理器效能与功耗 大小核设计架构突起

作者:时间:2016-09-12来源:网络收藏

4.jpg

图4 切换模式DVFS曲线图

MP支援非对称丛集运作

至于 MP模式则进一步将软体堆叠分配到两个丛集中各个,如此一来,所有CPU皆可同时运作,将系统效能提升到最高点。

由于big.LITTLE系统可经由CCI-400达到快取记忆体的一致性,因此有另一种模式能让Cortex-A15及Cortex-A7同时运作并同步执行程式码,称为big.LITTLE MP,基本上可看作一种异质性多工处理模型。这是big.LITTLE系统最先进且最具弹性的模式,能跨越两个丛集调整单一执行环境。

在这种使用模式下,若执行绪有上述处理效能方面的需求,便可开启Cortex-A15核心并同时透过Cortex-A7处理器核心执行任务。如果没有这方面需求,则只须开启Cortex-A7处理器,在实际应用上,不同丛集的处理器核心不一定一致,而big.LITTLE MP比较容易支援非对称的丛集。

调降低频运算多余功耗 big.LITTLE崭露头角

big.LITTLE技术之所以受到IC设计业者瞩目,原因就是一般行动工作量对效能的需求各有不同,必须找到最合适的核心处理。图5显示的是目前搭载Cortex-A9的行动装置中,两个核心在DVFS、闲置与完全关机状态下所花费时间的百分比,(a)处代表最高频率操作点;(b)处则代表最低频率操作点,介于两者之间则属中级频率。

5.jpg

图5 big.LITTLE切换模式DVFS曲线图

除DVFS状态,作业系统电源管理也会使中央处理器闲置,图中(c)处代表闲置时间,当CPU闲置的时间够长,系统电源控制软体将完全关闭其中一个核心以节省耗电,图中(d)处便代表这部分。

从图5可清楚看出应用程式处理器在好几种普通工作量下,都有相当多时间处于低频率状态,在big.LITTLE系统里,系统单晶片(SoC)可利用耗能较低的Cortex-A7核心,执行最高操作频率以外的所有工作。以相同方式分析更为密集的工作量,Cortex-A7处理器对应出低于1GHz频率的机会仍然很大。

事实上,自2011年起,使用者层级软体已能在big.LITTLE排程上运转,不过,那只是在处理器核心与互联的软体模型环境上发展。为完整评估big.LITTLE系统效能、功耗及调校是否合宜,还须打造一个能让使用者软体全速运转的测试晶片。

测试晶片早在2012年初夏即由晶圆代工厂完成,并在短短几周内开始搭配参考设计板运转,支援完整版的Linux系统及Android 4.0作业系统。这个测试晶片包含一个双核心Cortex-A15丛集、一个三核心Cortex-A7丛集,以及CCI-400快取一致汇流排架构。会影响部分使用者评效基准的绘图处理器并不包括在内,但平台仍可支援Linux、Android作业系统与效能测试软体。

测试晶片的Cortex-A15最高频率达1.2GHz,Cortex-A7则为1GHz。效能评析结果显示,虽然测试晶片上的记忆体系统效能不如 big.LITTLE SoC量产后的预测水准,但Cortex-A15与Cortex-A7中央处理器的效能仍落在预期范围内。

用来测试big.LITTLE效能的任务量,主要基于Android 4.0系统,透过网页进行网路浏览器效能循环,背景则有音效播放。在此实例中均以相当密集的工作量搭配对性能需求不高的背景活动,网路浏览器每2秒便进行网页循环,每页卷动达500画素,因此对系统效能需求相对较高。

这组结论属于较早期的测试结果,用来测试初版big.LITTLE MP修正程式组,将Linux排程程式从一个完整而平衡的排程模式调整成big.LITTLE模式。预期未来在更多业者投入软体修正后,效能与能耗将更进一步改善,而其他可调校的部分也将有相关解决方案被提出。

另外,测试晶片缺少GPU,使CPU的负载高过搭载GPU系统在卸载状态下的负载水准,而在CPU负载较低的状况下,可能会较常使用LITTLE核心,进而达到节能目的。它包含一套基本的电压及频率操作点,但没有对单一处理器核心做独立的电源开关设计,因此big.LITTLE系统单晶片量产后测试结果可望提升。举例来说,后台任务效能便可节省超过70%能耗。

big.LITTLE MP模式下半年出炉

IC设计业者正全力投入big.LITTLE开发,然而,各界最常见的疑问就是应选择哪一种软体模式?目前主要是在CPU切换与big.LITTLE MP之间择一,而两种方式各有正反意见。在CPU切换方面,由于big及LITTLE核心处于搭配成对的状态,因此对称式的拓扑能顺畅运作;而big及 LITTLE核心数量不同的非对称式拓扑则须额外的运转。

由于Cortex-A7中央处理器核心体积较小,因此可使用四个LITTLE核心加上一到两个big核心,这种作法可能会具有吸引力。从正面角度来看,中央处理器切换让电源及效能的调校更为容易,可重复利用既有的作业系统电源管理程式码,代表实作将有多年的研发及测试结果作为支援。加上不必调整核心排程程式,范围比执行big.LITTLE MP模式更为简化,而软体模式也能日趋成熟。

整体而言,CPU切换是一种极佳解决方案,2013上半年后可望进入量产,相关IC设计业者亦正研拟升级至big.LITTLE MP模式,以提供更多元的处理器运算解决方案。big.LITTLE MP具有多项技术优势,虽技术尚未完全成熟,但目前的测试结果已相当不错。由于此模式也支援非对称式拓扑,故毋须调整软体即可完全利用系统中所有核心,对提升晶片效能并降低功耗更有利。

举例来说,big.LITTLE MP能同步利用所有核心在短时间内达到最高效能,或将big与LITTLE核心上的DVFS设定与排程程式设定调成不同状态,以节省更多电力。不过弹性提升仍有其代价,晶片商与系统业者均须增加调校动作,才能从big.LITTLE MP平台获取完整的效能及能耗优势。

这与过去一直为主流,由晶片和晶圆代工厂将作业系统能源管理设定,以及DVFS参数资料,依装置需求转化为行动系统单晶片平台的作法并无太大差异。 big.LITTLE MP模式将切换模式延伸并纳入新的参数资料,不仅更为节能,更能为经过效能优化的big核心增加系统回应度。



关键词: big.LITTLE ARM 处理器

评论


相关推荐

技术专区

关闭