关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于蓄电池储能的光伏并网发电功率平抑控制研究

基于蓄电池储能的光伏并网发电功率平抑控制研究

作者:时间:2012-08-24来源:网络收藏

双向DC/DC控制框图

4 仿真分析

为了验证本文所提出的储能型发电系统功能,开展了仿真研究。在标准光照和标准温度下,光伏阵列开路电压320 V,短路电流20.65 A,最大功率点电压290.4 V;电网相电压220 V,频率50 Hz ;直流母线参考电压600 V,储能电池是额定电压150 V、额定容量150 Ah铅酸蓄电池。

仿真时,光照情况如图7(a)中曲线S所示,在0.6 s时模拟受云朵的影响光照急剧下降,持续一段时间后恢复正常,在t=0.9 s的时候光照突然变强,持续一段时间后又恢复到正常值;温度如图7(a)中曲线T所示。图7(b)和7(c)分别是光伏阵列工作端电压和光伏阵列输出功率,可见MPPT控制使光伏阵列始终工作在最大功率点电压290 V附近,在不同光照和温度下,持续输出最大功率。图7(d)是逆变器输出的a相电流和电网a相电压,可以看出逆变器输出的电流波形正弦度好,几乎和电网电压同频同相,功率因数为1。

MPPT和逆变输出结果

图8是储能系统的仿真结果,温度和光照情况同上,在t=1.5 s的时候电网因故障断开。图8(a)中,Ppv、Pg和Pb分别是光伏阵列输出的功率、并网功率和电池的工作功率。温度和光照的变化导致光伏阵列输出的功率波动较大,但在储能系统的作用下,并网功率变得平缓、变化率减小,实现了功率平抑控制。当电网故障断开时,光伏阵列仍能继续发电,提高了系统的发电效率。图8(b)为电池工作电流,正值表示放电,负值表示充电,随着光伏阵列发出功率的变化,电池能快速地改变工作电流,配合功率平抑控制对能量予以管理。图8(c)是直流母线电压,即使在电网故障切除时,直流母线电压也能控制在600 V左右。

5 实验分析

通过实验,重点验证储能系统的功率平抑控制功能。实验平台由双级式逆变器和双向DC/DC变换器构成,储能单元由4个铅酸蓄电池串联组成,单只额定电压12 V、额定容量100 Ah。光伏电池由电压可调的直流电源模拟,通过调节直流电源的输出电压,模拟光伏阵列运行点的变化及输出功率的波动。

实验结果见图9,其中,图9(a)展示了直流电源模拟的光伏阵列功率、并网逆变器输出功率和电池工作功率,分别用符号Ppv、Pg和Pb表示;图9(b)是蓄电池的工作电流,正值表示充电,负值表示放电;图9(c)是逆变器输出的电流。可见,逆变器输送到电网的功率得到了有效的平抑,变化率得到了控制,随着光伏阵列输出功率的波动,双向DC/DC变换器能快速地调整蓄电池能量的流动。

功率平抑实验结果

6 结论

提出的储能型发电系统,有效解决了光伏功率波动的问题。系统不仅实现了最大功率跟踪和并网发电,而且通过功率平抑控制,有效地稳定了并网功率。当电网故障断开时,光伏阵列仍然可以发电,将能量存储于电池,提高了系统效率。仿真和实验结果验证了本文所提系统的可行性和优良性能。

参考文献

[1] 赵争鸣,刘建政,孙晓瑛,等. 太阳能光伏发电及其应用[M]. 北京:科学出版社,2005: 1-9.

[2] 吴玉蓉,张国琴.基于DSP控制的单相光伏并网逆变系统的设计[J].继电器,2008, 36(4): 51-56.

[3] 李炜,朱新坚. 光伏系统最大功率点跟踪控制仿真模型[J]. 计算机仿真,2006,23(6):239-249.

[4] Kim T-Y,Ahn H G,Park S K,et al. A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation[C]. // IEEE International Symposium on Industrial Electronics,June 12- June 16,2001,Korea (Pusan): 2001:1011-1014.

[5] 孙自勇,宇航,严干贵,等.基于PSCAD的光伏阵列和MPPT控制器的仿真模型[J].电力系统保护与控制,2009,37(19):61-64.

[6] Gokhale Kalyan P,Kawamura Atsuo,Hoft Richard G. Deadbeat microprocessor control of PWM inverter for sinusoidal output waveform synthesis[C]. // IEEE Power Electronics Council,New York(USA);ESA,Paris,Fr. PESC Record-IEEE Annual Power Electronics Specialists Conference: 1985: 28-36.

[7] 戴训江,晁勤.单相光伏并网逆变器固定滞环的电流控制[J].电力系统保护与控制,2009,37(20): 12-17.

[8] 周德佳,赵争鸣,袁立强,等. 基于同步矢量电流比例-积分控制器的光伏并网系统[J]. 清华大学学报,2008,49(01):33-36.

[9] Senjyu Tomonobu,Datta Manoj,Yona Atsushi Kim. A control method for small utility connected large PV system to reduce frequency deviation using a minimal-order observer[J]. IEEE Trans Energy Covers,2009,24(2):520-528.

[10] 杜朝波,卢勇,严玉廷. 并网光伏发电系统运行特性分析[J]. 云南电力技术,2009,37(3):6-8.

[11] Hussein K H,Muta I,Hoshino T,et al. Maximum photovoltaic power tracking:an algorithm for rapidly changing atmospheric conditions[J]. IEE Proceedings Generation,Transmission and Distribution,1995,142(1):59-64.

[12] 张凌. 单相光伏并网逆变器的研制[D]. 北京:北京交通大学,2007.

[13] Bose B K. Modern power electronics and AC drives[M]. Beijing: China Machine Press,2005: 151-217.

[14] 许海平,孙昌富,马钢,等. 基于DSP的燃料电池车用双向DC-DC变换器的研究[J]. 电气自动化,2004,26(3):33-35.



评论


相关推荐

技术专区

关闭