关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 电力系统故障波形图中关键点识别及分析

电力系统故障波形图中关键点识别及分析

作者:时间:2012-12-24来源:网络收藏

IB:I=[(总格×电流标度I)/(2×√2)] ×变比=[(3.8×4)/(2×√2)] ×1200/1=6450A

I0的计算方法与IB相同,需要说明的是I0实际指的是3I0。

电压计算方法:先以UB通道上存在的故障电压波形两边的最低波峰为基准点画出一条刻度标尺垂直线,同样如图3所示,最后在刻度标尺上计算出两边最低波峰之间存在的间隔有几格标尺,计算出来总标尺格除以2得到电压具体存在标尺格,在图中显示的U:45V/格(说明:不同故障波形该值是不相同),在除以√2得到二次电压有效值,最后再乘以本间隔母线PT的变比,即得到一次电压有效值。假设本间隔PT变比为1100/1。

UB:U=[(总格×电流标度I)/(2×√2)] ×变比=[(2×45)/(2×√2)] ×1100/1=35kV

U0的计算方法与UB相同,需要说明的是U0实际指的是3U0。

3. 故障中读取电流、电压相位

判断某次故障的相位是否正确不能凭借报告一些简单信息判断,为了准确分析清楚故障的相位必须借助

故障电流、电压相位读取:可以利用故障中的电流、电压波测量故障期间电流、电压的相位,分析故障时的测量阻抗角。测量方法为通过测量电流、电压波形过零的时间差来计算相位,若电流过零时间在电压过零时间之后则为滞后相位,否则为超前相位。电流过零变负滞后电压过零变负约4ms,,相当于滞后18°×4=72°,因此也可以判断故障发生在正方向,阻抗角接近线路阻抗角为金属性接地故障。若实测电流超前电压110°左右则说明是反向发生故障,如图4所示。再由图4可以看出,B相发生故障后,B相相电压明显降低,非故障A、C相电压相位基本没有变,因此可以画出它们的相量图,如图5所示。

电力系统故障波形图中关键点识别及分析

4.波形图中区分故障性质

后,在对应的保护屏处打印出一张波形图时,应该首先观察波形图的全貌,再判断故障类型、保护的动作行为及断路器的动作行为、故障的持续时间等信息,写出简要的故障分析报告,由于故障波形图中含有大量的故障信息,还可以详细地分析电流、电压波形特点及其变化过程,从中得到与查找事故有用信息。本文以线路故障为例进行说明。

(1)正向区内瞬时故障波图分析。[3]

图所6所示,变电站的一次正向区内瞬时故障波形图。可以看出,发生区内瞬时性故障后,B相相电压明显降低,保护大约2-3mms发信,过8-9ms收信,保护判断为区内发生B相故障,发出跳闸指令,最快相对时间为15ms断路器跳开,在922ms时保护发出合闸指令,断路器重合闸成功。电流、电压恢复正常。也可以用3所示的方法去判断正向区内故障。

电力系统故障波形图中关键点识别及分析

(2)正向区内永久故障波图分析

图所7所示,变电站的一次正向区内永久性故障波形图。可以看出,发生永久性故障后,B相电压明显降低,保护大约2-3mms发信,过8-9ms收信,保护判断为区内发生B相故障,发出跳闸指令,最快相对时间为15ms断路器跳开,在922ms时保护发出合闸指令,断路器重合闸成功。重合到故障的线路,保护立即又发生第二次故障,断路器跳开三相,未合闸成功(原因是第一次跳闸后重合闸未充电成功)。同样也可以用3所示的方法去判断正向区内故障。

电力系统故障波形图中关键点识别及分析

三、结束语

本文通过对故障波形图的几个关键点分析,总结了通过故障波形图读取典型事件的准确事件时间,计算电流、电压有效值和相位以及故障性质的区分方法。当系统发生故障后,可以从这些方法中了解相关故障信息和保护等设备的动作行为,并迅速准确地判断故障情况,为事故处理、恢复供电争取了宝贵的时间。希望对现场工作人员分析故障具有一定参考价值。

断路器相关文章:断路器原理


高压真空断路器相关文章:高压真空断路器原理
漏电断路器相关文章:漏电断路器原理


评论


相关推荐

技术专区

关闭