新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 一种混合信号通用电池充电器设计

一种混合信号通用电池充电器设计

作者:时间:2010-09-30来源:网络收藏

  线性解决方案

  当输入源稳压良好时,可以采用线性充电解决方案。Microchip的MCP738xx 线性系列就是一个线性充电解决方案的例子。在这些应用中,线性解决方案提供了诸多优点,如易于使用、尺寸小以及低成本。

  开关式充电解决方案

  对于输入电压范围较宽的情况,如无稳压的AC-DC墙式适配器或汽车DC输入,开关式稳压器可以将内部的功率损耗降到合理的水平。

  选择拓扑结构

  开关式稳压器拓扑结构决定了稳压器开关和无源滤波元件的构成。这种构成的差异随拓扑结构的选择而变化,从而要在复杂性、效率、噪声以及输出电压范围之间权衡。电源转换器的拓扑结构很多,但只有几种适用于5W50W范围的

  降压稳压器

  降压稳压器是电池充电应用的一种常用拓扑结构。降压稳压器具有以下优点和缺点:

  优点:1. 复杂性低、单电感结构。2. 对于同步应用,转换效率可达90%。

  缺点:1. 降压稳压器MOSFET开关集成的二极管在没有输入电压时会构成一个电池放电通路。因此需要一个额外的阻断二极管,增加额外器件的同时也导致系统中出现额外的压降。2. 降压稳压器的输入电流是脉冲式或间歇的。这种拓扑结构在电源的输入端产生较高的电磁干扰(EMI)。大多数降压稳压器都需要额外的输入EMI滤波。3. 降压稳压器只能对比输入电压低的输出电压进行稳压。有些应用的输入电压范围宽,覆盖到必需的输出电压范围。对于对多节锂离子电池单元组成的电池组进行充电的应用来说,这种情况很常见。4. 发生降压开关短路故障时,输入至电池之间短路。对于不具备电池内部保护的镍氢电池,就会引发安全问题。5. 降压稳压器需要高端驱动(对N通道MOSFET开关),与低端拓扑结构相比,这会带来更大的复杂性。6. 脉宽调制(PWM)控制器应用中的外部开关电流检测比较复杂。对于电池短路或负载短路等故障模式来说,限制开关电流非常重要,没有高速开关电流限制能力,电池充电器在发生短路时会被损坏。

  SEPIC(单端初级电感)稳压器

  SEPIC稳压器的拓扑结构在电池充电应用中也比较普遍。与降压稳压器和其它拓扑结构相比,SEPIC稳压器结构具有很多优点,当然也有一些缺点。

  优点:1. 阻断二极管内建于电池系统的拓扑结构中,因此,不需要额外的元件,也不会导致额外的损失。2. 与降压稳压器的脉冲式输入电流相比,从电源汲取的输入电流是连续的(平滑的)。3. 输入至输出是隔离的,因此在开关短路时可以保护负载或电池。4. SEPIC稳压器的拓扑结构具有升压或降压能力。5. SEPIC开关是低端驱动结构,简化了栅极驱动以及开关中的电流检测。6. 次级侧电感平均电流等于电池电流,因此检测电流不需要在电池低端串联电阻。

  缺点:1. 需要两个电感或一个耦合电感。 2. 需要一个耦合电容,对于大功率(> 50W),或高电压(VIN > 100V)应用,成本较高。

  开关式电池充电器

  通过将划分为两部分,可以开发出经济的智能电池充电器系统。电池充电器实质上是系统。例如,电源部分(本例中即SEPIC稳压器)是模拟的。电源以高频开/关,需要某种模拟驱动电路。另一方面,充电结束定时器、故障管理以及开/关控制一般是数字化控制的,需要定时器和可编程能力。

  电池充电器技术参数

  输入电压:6V20V

  输出电压:0V4.2V(单节电池), 0V8.4V(两节电池)

  预充电流:200 mA

  预充阈值:3V

  恒流充电:2A充电

  结束阈值:100 mA(触发充电周期结束的电流值)

  特性:过压保护(电池移除)

  过流保护(电池或负载短路)

  检测电池温度:保证充电安全

电能表相关文章:电能表原理


评论


相关推荐

技术专区

关闭