新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 电源设备可靠性的研讨

电源设备可靠性的研讨

作者:时间:2011-03-27来源:网络收藏

2?4有效度(可用度)A

A的定义为:电子系统使用过程中(尤其在不间断连续使用条件下)可以正常使用的时间和总时间的比例(通常以百分比来表示)。即:

A=MTBF/(MTBF+MTTR)

A值越接近于100%,表示电子系统有效工作的程度越高。

实际上,设备MTBF受到系统复杂程度,成本等多方面因素的限制,不易达到很高的数值。尽量缩短MTTR也同样可以达到增加A的目的。对于高失效率单元,采用快速由备份单元代替失效单元的冗余式设计,可以在MTBF不很高的情况,使MTTR接近于0,这样,也可以使A近于100%。

2?5可靠度R(t)

可靠度R(t)是衡量电子系统的最基本的指标。可从可靠度R(t)的定义中导出故障概率F(t)。即:

F(t)=1-R(t),或R(t)=1-F(t)。

可以看出,对于R(t)和F(t)来讲,其值均为时间量t的函数。极端来讲,t=0时,任何系统的R(t)=1,〔F(t)=0〕。在t=∞时,任何系统的R(t)=0,〔F(t)=1〕。R(t)和F(t)只有在指定的时间范围以内才有具体的意义。在实际使用中常用年可靠度P来表示。

年可靠度P的定义为:电子系统在规定的环境条件下,在1年的时间内,完成规定功能的概率。例如P=0.9,就说明系统在一年内有90%的可能不出现故障。(也即有10%的可能会出现故障)。如果在一个地点有10台同类设备,则平均1年会有1台设备可能需要进行维修。

国际通信卫星系统有关可靠度R(t)的参考数据如表4所列。

2.6失效率λ,平均无故障工作时间MTBF和可靠度R(t),故障概率F(t)之间的数学关系

依据λ,MTBF,R(t),F(t)的定义和基本数学表达式,经数学运算以后,可得出以下的相互数学关系(运算过程从略)。

(1)MTBF=1/λ或λ=1/MTBF,

即λ和MTBF互为倒数关系。

(2)R(t)=e-λt或R(t)=e-t/MTBF=1/et/MTBF,

即R(t)和λ之间为指数关系。

(3)F(t)=1-R(t)或R(t)=1-F(t),

这样,λ,MTBF,R(t)三个指标,可以通过上述换算,从一个量算出另两个量的对应数值。在不同的场合,以上三个指标都可能在衡量电子系统时交替使用。

3提高系统的途径

3?1认真从事系统可靠性的设计

电子系统的可靠性模型,大体上有以下三种形式:

(1)串联系统的可靠性模型

串联系统模型如图1所示。串联系统是指它的每一个元件对于系统的正常工作都是必须的,不可或缺的;任何一个元件的失效,将导致系统工作不正常。这是一种较常见和简单的系统。

如果系统有N种元件,每种元件的失效率为λi(i=1~N),则串联系统的总失效率:

λ?=n1λ1+n2λ2+……nNλN

总的无故障工作时间:

MTBF?=1/λ?=1/[n1λ1+n2λ2+……nNλN]

年可靠度:P=1/e8760·λ?=1/e8760/MTBFN。(因每年共8760h)。

例(1):优质的交流参数稳压电源单元的MTBF0=20万h,如果每台铁路信号屏用10只电源单元。则每屏交流电源部分的MTBF=MTBF0/10=2万h。相当于年可靠度P=0.645=64.5%。即年故障概率F=1-P=35.5%。也就是每台电源屏每年有35.5%的可能性需要维修。如果一个车站有10台信号屏,则每年有3~4台交流参数稳压电源单元有可能出故障,就是很正常的情况。这也和某部门有100台电源单元,大都连续工作的故障概率相仿。

图1串联系统模型

可见,虽然每单元交流参数稳压电源MTBF0=20万h,已经比其他类型的交流电源高了许多倍(其它类型电源MTBF往往只有数千h)。但处于连续工作条件下的串联系统模型的信号屏的可靠度并不十分令人满意。

(2)并联系统的可靠性模型

并联系统模型如图2所示。图中:U1,U2均可单独地实现系统的功能,而且U1,U2任何一个单元出现故障,将自动(或手动)和输入、输出端断开,同时接入另一个互为备份的单元。

显然,并联系统的任何一个单元的失效,均不会影响系统的功能,只有在二个单元均失效时,系统才不能正常工作。同理也可以N个单元并联构成一个系统。

其数学关系为:

故障概率:F(t)=F1(t)·F2(t)…FN(t)

若F1(t)=F2(t)…=FN(t)则可靠度:

R(t)=1-F(t)=1-[F1(t)]n

例(2):优质的交流参数稳压电源单元的MTBF0=20万h,每台铁路信号屏用10只电源单元。若每个电源单元有2台互为备份的电源构成并联系统。则每台电源的年可靠度:

P1=1/e8760/MTBF,P1=0.957

年故障概率F1=1-P1=0.043

所以,每个电源单元(2台互为备份的电源构成)的年故障率为:

F11=[F1]2=1.85×·10-3

每个电源单元的年可靠度:

P11=1-F11=1-[1-P1]2

=1-1.85×10-3=0.998=99.8%

每台铁路信号屏有10只电源单元,则每台信号屏的年可靠度:

P=(P11)10

=(0.998)10=0.98=98%,

即年故障概率F=1-P,为2%。

若一个车站有10台信号屏,则每年只有2%的可能性,会进行一次维修。与例(1)串联系统相比,故障概率降低了近18倍。

结论很明确,在每个单元的可靠性受各种限制不可能太高,而又要求系统具有很高的可靠度的情况下,采用并联系统代替串联系统是提高电子系统可靠性的根本方法。美国波音707飞机的发电机采用4台并联系统(用1备3),核电站的直流供电采用三台并联系统(用1备2),都是很好的例子。

并联系统的成本将高于串联系统,但为了保证必要的可靠性,花些代价是必须的也是值得的。

(3)混合系统可靠性模型

实际工程中,为了在成本和可靠性方面求得平衡,常常使用串联和并联混合系统。也就是对可靠度较低的单元采用并联系统,可靠度高的单元保持串联系统。模型如图3所示。

混合系统的可靠度:

R(t)=R1(t)·R2(t)·R3-2(t)·R4(t)

如果R1=R2=R4=0.99,R3=0.9

则R3-2=1-[1-R3]2,R3-2=0.99

R=R1·R2·R3-2·R4

=0.96=96%。(F=4%)。

假使,U3不用并联系统,则R=0.87=87%,(F=13%)。可见,两者可靠度的差别还是很明显的,故障率降低了3倍多。混合系统比串联系统可靠性高,比并联系统简单。

3.2改善电子系统的使用环境降低元器件的环境温度

电子系统的可靠性和使用环境如何有着极为密切的关系。元器件的失效率在不同的使用环境中和其基本失效率差别很大,通常应以环境系数进行修正。美国于上世纪70年代公布了不同元器件的环境系数数值。原有9种环境条件,现只列出较常用和有代表性的4种如下:

图2并联系统模型

图3混合系统模型

——GB:良好地面环境。环境引力接近于“0”,工程操作和维护良好。

——GF:地面固定式的使用环境。装在永久性机架上,有足够的通风冷却。由军事人员维修,通常在不热的建筑内安装。

——NS:舰船舱内环境。水面舰船条件,类似于GF。但要受偶然剧烈的冲击振动。



评论


相关推荐

技术专区

关闭