新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 降低开关电源开关损耗的原理

降低开关电源开关损耗的原理

作者:时间:2012-02-08来源:网络收藏

随着频率的升高,MOSFET的另一显著功耗与MOSFET打开、关闭的过渡时间有关。图3显示MOSFET导通、断开时的漏源电压、漏极电流和MOSFET。在功率曲线下方,转换期间的功耗比MOSFET导通时的大。由此可见,功率损耗主要发生在状态转换时,而不是MOSFET开通时。

MOSFET的导通和关断需要一定的过渡时间,以对沟道充电,产生电流或对沟道放电,关断电流。MOSFET参数表中,这些参数称为导通上升时间和关断下降时间。对指定系列中,低导通电阻MOSFET对应的开启、关断时间相对要长。当MOSFET开启、关闭时,沟道同时加有漏极到源极的电压和导通电流,其乘积等于功率损耗。三个基本功率是:

P=I*E

P=I2*R

P=E2/R

对上述公式积分得到功耗,可以对不同的开关频率下的功率损耗进行评估。

MOSFET的开启和关闭的时间是常数,当占空比不变而开关频率升高时(图5),状态转换的时间相应增加,导致总功耗增加。例如,考虑一个SMPS工作在50%占空比500kHz,如果开启时间和关闭时间各为0.1s,那么导通时间和断开时间各为0.4s。如果开关频率提高到1MHz,开启时间和关闭时间仍为0.1s,导通时间和断开时间则为0.15s。这样,用于状态转换的时间比实际导通、断开的时间还要长。

可以用一阶近似更好地估计MOSFET的功耗,MOSFET栅极的充放电功耗的一阶近似公式是:

EGATE=QGATE×VGS,

QGATE是栅极电荷,VGS是栅源电压。

在升压变换器中,从开启到关闭、从关闭到开启过程中产生的功耗可以近似为:

ET=(abs[VOUT-VIN]×ISW×t)/2

其中ISW是通过MOSFET的平均电流(典型值为0.5IPK),t是MOSFET参数表给出的开启、关闭时间。

MOSFET完全导通时的功耗(传导损耗)可近似为:

ECON=(ISW)2×RON×tON,

其中RON是参数表中给出的导通电阻,tON是完全导通时间(tON=1/2f,假设最坏情况50%占空比)。

考虑一个典型的A厂商的MOSFET:

RDSON=69mW

QGATE=3.25nC

tRising=9ns

tFalling=12ns

一个升压变换器参数如下:

VIN=5V

VOUT=12V

ISW=0.5A

VGS=4.5V

100kHz开关频率下每周期的功率损耗如下:

EGATE=3.25nC×4.5V=14.6nJ

ET(rising)=((12V-5V)×0.5A×9ns)/2=17.75nJ

ET(falling)=((12V-5V)×0.5A×12ns)/2=21nJ

ECON=(0.5)2×69mW×1/(2×100kHz)=86.25nJ.

从结果可以看到,100kHz时导通电阻的损耗占主要部分,但在1MHz时结果完全不同。栅极和开启关闭的转换损耗保持不变,每周期的传导损耗以十分之一的倍率下降到8.625nJ,从每周期的主要功耗转为最小项。每周期损耗在62nJ,频率升高10倍,总MOSFET功率损耗增加了4.4倍。

另外一款MOSFET:

RDSON=300mW

QGATE=0.76nC

TRising=7ns

TFalling=2.5ns.

SMPS的工作参数如下:



评论


相关推荐

技术专区

关闭