新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 遗传优化神经网络在小电流接地系统故障选线中的应用

遗传优化神经网络在小电流接地系统故障选线中的应用

作者:时间:2011-02-11来源:网络收藏

2 输入、输出量的选取
  在中性点不电网中,假定有K条馈电线路,则在输入、输出量选取如下:
2.1 输入量的选取
  根据馈电线路数K,每条馈线输入数据共有N个,则共有K*N个输入节点,每条馈线输入数据分别为:
  1) 零序测量导纳Yoi[3]
  根据电网正常运行时的零序回路,利用消弧线圈适当的脱谐状况和位移电压的相应改变,可将每条馈线零序阻抗的不对称分量,即对地导纳计算出来。如果所有的零序导纳都不超过正常运行时电网限定的允许值,则无;当任何一条馈线发生单相时,就相当于产生了一个附加的不对称电源,这就会导致零序电压和馈线零序的总和量发生变化,此时同样计算出该条馈线的对地导纳。将计算出的馈线对地导纳输入,作为第一组输入数据。
  2) 零序幅值
  单相短路时,流过元件的零序在数值上等于所有非故障元件对地电容电流之和,即故障线路上的零序电流最大,所以零序电流幅值的大小,也是判别故障线路的有效数据。故将各条馈线的零序电流作为第二组输入数据。
  3) 五次谐波分量
  从过渡电阻的非线性可知故障点本身就是一个谐波源(金属性接地是经电阻接地发展而来的),且以基波和奇次谐波为主,根据谐波在整个内的分布和保护的要求,使用五次谐波分量为宜。NES(中性点经消弧线圈接地)中的消弧线圈是按照基波整定的,即有,可忽略消弧线圈对五次谐波产生的补偿效果,因零序电流五次谐波分量产生在NES中有着与NUS(中性点不接地)中零序电流基波分量相同的特点,根据上述零序电流幅值法原理,将其经消弧线圈所得五次谐波分量取其电流幅值,作为第三组输入数据。
  4)序分量测量值Is
  根据参考文献[4],利用对电流正、负序分量的有效值进行相加,得出一综合测量值Is将其作为第四组输入数据。
  在此中,仅选择了4组输入数据,在实际中,可以根据实际情况,加入其它数据,以更好地进行选线。
2.2 输出量的选取
  在此网络中,共选取K+1个输出节点,代表1至K条馈线,第K+1个节点代表母线,传统的输出1代表有故障,0代表不故障的绝对关系灵活化,其值可以取[0,1]区间的任一数值,再将其输出数值进行判断,大于0.5判为故障,小于0.5判为不故障。

3 网络学习及训练
选取一有10条馈电线路的输电系统,如图3所示:

  此输电系统中,L1~L4为电缆线路,L5~L10为架空线路。
  对此网络进行学习训练。根据训练的实际情况,选取64个隐含节点,则依据上述原理,生成一个有4×10×64×2位的个体,然后依据神经网络的算法原理,进行网络训练。在此实际网络中,例如,当L3馈线发生接地短路时,则神经网络的理想输出为[0 0 1 0 0 0 0 0 0 0],神经网络的实际输出为yi(i=1,2,...,10),为求取其适应度函数值,先求取方差,则其适应度函数取为f=100/S。可见,其适应度函数越高,方差越小,与标准选线结果也就越接近。
  经过87次的训练,该网络训练完成。进行实际运算得到的结果表明,其判断准确率可达90%以上。

4 结论
  与传统的选线方法(五次谐波分量法、零序导纳法)相比,此方法根据多个判据的综合判定,加上采用了算法进行神经网络的,避免了神经网络容易陷入局部最小的问题,大大提高了接地选线的准确性。但随着馈电线路的增加及隐含层接点数目的增加,会大大加大算法的计算量,考虑到单相接地故障允许运行1~2小时,随着计算机速度的不断加快,此问题已不是很重要,故在现场运行中是可行的。

基尔霍夫电流相关文章:基尔霍夫电流定律



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭