首页  资讯  商机   下载  拆解   高校  招聘   杂志  会展  EETV  百科   问答  电路图  工程师手册   Datasheet  100例   活动中心  E周刊阅读   样片申请
EEPW首页 >> 主题列表 >> mos管

mos管 文章 进入mos管技术社区

MOS管输入电阻很高,为什么一遇到静电就不行了?

  • 一、MOS管输入电阻很高,为什么一遇到静电就不行了?MOS管一个ESD敏感器件,它本身的输入电阻很高,而栅-源极间电容又非常小,所以极易受外界电磁场或静电的感应而带电,又因在静电较强的场合难于泄放电荷,容易引起静电击穿。静电击穿一般分为两种类型:一是电压型,即栅极的薄氧化层发生击穿,形成针孔,使栅极和源极间短路,或者使栅极和漏极间短路;二是功率型,即金属化薄膜铝条被熔断,造成栅极开路或者是源极开路。二、MOS管被击穿的原因及解决方案?第一、MOS管本身的输入电阻很高,而栅源极间电容又非常小,所以极易受外界
  • 关键字: MOS管  电路设计  ESD  

南芯科技推出内置MOS管的高集成度升降压充电芯片

  • 近日,南芯科技宣布推出全集成同步双向升降压充电芯片 SC8911,该芯片配备 I2C 接口,专为常见的 2 串电池 30W 充电宝应用进行了效率优化,可有效降低外壳温升,为用户提供更安全、更高效的充电体验。SC8911 可支持 OTG 反向升压功能,兼容涓流充电、预充电、恒流充电、恒压充电、自动终止等多种模式,助力客户实现更高的效率、更低的 BOM 成本和更小的 BOM 尺寸。集成MOS方案,兼具三大亮点在传统升降压控制器搭配外置 MOS 的方案中,由于布板限制,PCB 走线往往过长,导致功率管驱动速率受
  • 关键字: 南芯科技  MOS管  升降压充电芯片  

MOS管防护电路解析

  • 功率MOS管自身拥有众多优点,但是MOS管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOS管对必须为其设计合理的保护电路来提高器件的可靠性。功率MOS管保护电路主要有以下几个方面:1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt而引起误导通。为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻(R509),电阻的大
  • 关键字: MOS管  电路设计  

MOS管GS电阻有什么作用?

  • MOS管具有三个内在的寄生电容:Cgs、Cgd、Cds。这一点在MOS管的规格书中可以体现(规格书常用Ciss、Coss、Crss这三个参数代替)。MOS管之所以存在米勒效应,以及GS之间要并电阻,其源头都在于这三个寄生电容。MOS管内部寄生电容示意IRF3205寄生电容参数1.MOS管的米勒效应MOS管驱动之理想与现实理想的MOS管驱动波形应是方波,当Cgs达到门槛电压之后, MOS管就会进入饱和导通状态。而实际上在MOS管的栅极驱动过程中,会存在一个米勒平台。米勒平台实际上就是MOS管处于“放大区”的
  • 关键字: MOS管  电路设计  模拟电路  

MOS管又毁了?看看是不是这些原因

  • MOS管可能会遭受与其他功率器件相同的故障,例如过电压(半导体的雪崩击穿)、过电流(键合线或者衬底熔化)、过热(半导体材料由于高温而分解)。更具体的故障包括栅极和管芯其余部分之前的极薄氧化物击穿,这可能发生在相对于漏极或者源极的任何过量栅极电压中,可能是在低至10V-15V 时发生,电路设计必须将其限制在安全水平;还有可能是功率过载,超过绝对最大额定值和散热不足,都会导致MOS管发生故障。接下来就来看看所有可能导致失效的原因。01. 过电压MOS管对过压的耐受性非常小,即使超出额定电压仅几纳秒,也可能导致
  • 关键字: MOS管  

主副电源,MOS管自动切换电路分析

  • 先看一下这个电路:USB外接电源与锂电池自动切换电路设计如果主副输入电压相等,同时要求输出也是同样的电压,不能有太大的压降,怎么设计?这个电路巧妙的利用了MOS管导通的时候低Rds的特性,相比二极管的方式,在成本控制较低的情况下,极大的提高了效率。本电路实现了,当Vin1 = 3.3V时,不管Vin2有没有电压,都由Vin1通过Q3输出电压,当Vin1断开的时候,由Vin通过Q2输出电压。因为选用MOS管的Rds非常小,产生的压降差不多为数十mV,所以Vout基本等于Vin。原理分析1、如果Vin1 =
  • 关键字: 电源  MOS管  电路设计  

一个高温引发的悲剧,你永远想象不到用户把你的产品用在哪里?

  • 曾经的我呢还一个单纯的小攻城狮,当自己设计完的电路板通过了功能测试、性能测试、环境实验后,我就可以开开心心的玩耍了,但是永远也想想不到用户会把你的产品用在什么地方(客户你们考虑过产品的感受吗)。具体是这样的一个很简单的串口RS485电路,具体电路如下图所示,用了这个电路后就不要单独信号去管理485芯片的收发分时了(是不是很方便,我也这么想的)。问题就是出现这这个电路上,我们做环境实验的时候是在55度做的一点点问题都木有,该收收该发发,但是一到了用户那里工作一小会就挂了,啥也木的了,经过本人的现场排查(踩点
  • 关键字: 开关电路  MOS管  

MOS管常见的几种应用电路

  • 一、开关和放大器MOS管最常见的电路可能就是开关和放大器。1. 开关电路G极作为普通开关控制MOS管。2. 放大电路让MOS管工作在放大区,具体仿真结果可在上节文章看到。二、时序电路中作为反相器使用下图示例电路中,芯片1正常工作时,PG端口高电平。如果芯片1、芯片2有时序要求,在芯片1正常工作后,使能芯片2。可以看到芯片2的使能端初始连接VCC为高电平,当芯片1输出高电平后,(关注公众号:硬件笔记本)MOS管导通,芯片2的使能端被拉低为低电平,芯片2开始正常工作。这时MOS管起到的就是反相的作用。三、双向
  • 关键字: MOS管  电路设计  

8种开关电源MOS管的工作损耗计算

  • MOSFET 的工作损耗基本可分为如下几部分:1、导通损耗Pon导通损耗,指在 MOSFET 完全开启后负载电流(即漏源电流) IDS(on)(t) 在导通电阻 RDS(on) 上产生之压降造成的损耗。导通损耗计算:先通过计算得到 IDS(on)(t) 函数表达式并算出其有效值 IDS(on)rms ,再通过如下电阻损耗计算式计算:Pon=IDS(on)rms2 × RDS(on) × K × Don说明:计算 IDS(on)rms 时使用的时期仅是导通时间 Ton ,而不是整个工作周期 Ts ;RDS(
  • 关键字: MOS管  电路设计  

MOS管开关电路设计,用三极管控制会烧坏?

  • 三极管有NPN型和PNP型,同理MOS管也有N沟道和P沟道的,三极管的三个引脚分别是基极B、集电极C和发射极E,而MOS管的三个引脚分别是栅极G、漏极D和源极S。对于MOS管,我们在电路设计中都会遇到,那么应该如何设计一个MOS管的开关电路呢?MOS管开关电路我们一般会用一个三极管去控制,如下图!MOS管开关电路但是这个电路的缺点也是显而易见,由于MOS管有一个寄生的二极管,如果CD5V的滤波电容过大,或者后端有别的电压串进来,会把前端给烧坏!电流路径如下:后端电流路径如何改善这个问题呢?有两个方式,一种
  • 关键字: 三极管  MOS管  电路设计  

MOS管开关电路设计,用三极管控制会容易烧坏?

  • 三极管有NPN型和PNP型,同理MOS管也有N沟道和P沟道的,三极管的三个引脚分别是基极B、集电极C和发射极E,而MOS管的三个引脚分别是栅极G、漏极D和源极S。对于MOS管,我们在电路设计中都会遇到,那么应该如何设计一个MOS管的开关电路呢?MOS管开关电路我们一般会用一个三极管去控制,如下图!MOS管开关电路但是这个电路的缺点也是显而易见,由于MOS管有一个寄生的二极管,如果CD5V的滤波电容过大,或者后端有别的电压串进来,会把前端给烧坏!电流路径如下:后端电流路径如何改善这个问题呢?有两个方式,一种
  • 关键字: MOS管  开关电路设计  三极管  

MOS管及其外围电路设计

  • Warning: getimagesize(): SSL: connection timeout in /var/www/html/www.edw.com.cn/www/rootapp/controllerssitemanage/ManagecmsController.php on line 2070 Warning: getimagesize(): Failed to enable crypto in /var/www/html/www.edw.com.cn/www/rootapp/control
  • 关键字: MOS管  电路设计  

【干货】使用 MOS管构建双向逻辑电平转换器

  • 今天可以大家分享的是:使用 MOS 管构建一个简单的双向逻辑电平转换器电路逻辑电压电平的变化范围很大,从1.8V-5V。标准逻辑电压为5V、3.3V、1.8V等。但是,使用 5V逻辑电平的系统/控制器(如Arduino)如何与使用3.3V逻辑电平的另一个系统(如ESP8266)通信呢?这个时候就需要用到逻辑电平转换器,这里还将介绍 MOS管构建一个简单的双向逻辑电平转换器电路。一、高电平和低电平输入电压从微处理器/微控制器方面来看,逻辑电平的值不是固定的,对此有一定的耐受性,例如,5V逻辑电平微控制器可以
  • 关键字: MOS管  逻辑电平转换器  电路设计  

MOS管在BMS中的应用方案

  • BMS确保电池高效安全运行,MOS管检测过充、过放、过流等。电池电压高低与MOS管选型相关,选择时需注意热设计、RDS(ON)和雪崩能量。微碧专注MOS产品20余年,适用于高性能BMS场景。BMS(电池管理系统)负责监控、控制和保护电池,以确保电池的高效运行和安全性。MOS管在其中起到了检测过充电,过放电,充放电过流等作用。在充电状态时,当电池充电后过压时,充电控制端会由高电平转为低电平,从而使MOS管Q1关断,充电回路被切断,进入过电压保护。当电池通过负载放电,电池电压低于设定值时,放电控制端由高电平转
  • 关键字: MOS管  BMS  

MOS管在LED非隔离器中的应用方案

  • MOS管在LED非隔离电源中调节亮度和电流,确保LED稳定工作并延长寿命。它作为开关元件、电流驱动器和保护器,提高电源稳定性和安全性。选型时需注意额定电压、电流、导通电阻和耐压能力。推荐微碧半导体的MOS管产品,具有稳定性和可靠性,适用于LED非隔离电源等场景。MOS管(金属氧化物半导体场效应晶体管)被广泛应用于LED中,主要用于调节LED的亮度和电流,实现对LED的高效控制。在LED非隔离电源的应用方案中,MOS管(绝缘栅场效应管)扮演着关键性角色,提升LED非隔离电源的稳定性和安全性。LED非隔离设计
  • 关键字: MOS管  LED  非隔离器  
共92条 1/7 1 2 3 4 5 6 7 »

mos管介绍

  mos管是金属(metal)—氧化物(oxid)—半导体(semiconductor)场效应晶体管。或者称是金属—绝缘体(insulator)—半导体。   双极型晶体管把输入端电流的微小变化放大后,在输出端输出一个大的电流变化。双极型晶体管的增益就定义为输出输入电流之比(beta)。另一种晶体管,叫做场效应管(FET),把输入电压的变化转化为输出电流的变化。FET的增益等于它的transc [ 查看详细 ]

热门主题

树莓派    linux   
关于我们 - 广告服务 - 企业会员服务 - 网站地图 - 联系我们 - 征稿 - 友情链接 - 手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
备案 京ICP备12027778号-2 北京市公安局备案:1101082052    京公网安备11010802012473