- 通过极限学习机ELM算法改进K-SVD字典学习算法,并成功应用于多特征融合物体成像识别领域。研究结果表明:通过ELM算法,字典精确度和优势在处理后的提升效果均十分显著。不论是从计算效率还是计算准确率来看,改进的K-SVD算法表现出较佳优势。K-SVD算法性能可通过ELM显著提升,算法识别准确率在多特征加入后也相应快速增长。将较低分辨率的样本从图像中筛选出来,有利于减少傅里叶叠层成像数量。
- 关键字:
202308 K-SVD算法 算法改进 图像识别
k-svd算法介绍
您好,目前还没有人创建词条k-svd算法!
欢迎您创建该词条,阐述对k-svd算法的理解,并与今后在此搜索k-svd算法的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473