移动应用、基础设施与航空航天、国防应用中 RF 解决方案的领先供应商 Qorvo, Inc.新推出10 款支持 DOCSIS 3.1 的反向路径放大器,进一步扩大了产品组合,助力有线宽带服务提供商及其用户能够实现高带宽内容上传所需的最快数据速率。 Qorvo CATV 和宽带接入产品部总监 Kellie Chong 表示:“Qorvo 的反向路径产品为有线供应商
关键字:
Qorvo 放大器
随着LTE的发展,Pico-cell逐渐广泛应用,Pico-Cell是一种小型基站,可在100至200米范围内同时支持200个用户接入。在大型建筑物、购物中心以及人口密集的热点区域,Pico-Cell可以增加LTE网络容量,提升网络业务质量和稳定性,保障用户体验。相比于宏基站,Pico-Cell体积小巧(相当于目前RRU体积的三分之一),功耗更低。与Femto-Cell(支持10米覆盖范围和20个用户接入的毫微微蜂窝基站)相比,Pico-Cell能支持更多的用户接入及更广泛的覆盖。 在世强代理的AV
关键字:
放大器 Pico-Cell
做了这么多放大器,说下心得了,是多年实践出来的。后级放大器噪音的噪音引入,在电路设计合理的情况下,主要是电源和LAYOUT,把好这两关就基本问题不大。 但前级的放大器,也就是前置,就得讲究了。 1、器件的选择 包括运放和三机管的选择,都要尽量选择低噪音的,包括输入电压噪音和偏置的电流噪音。如果主要是运用于电压放大就偏重于电压噪音,电流放大的就是电流噪音了。 电容电阻等器件,也是很讲究的,电容尽量选用CBB材料,电解就用钽的,最好了。电阻呢,频率低的最好就使用绕线电阻,那是最理想的。但如果频率高
关键字:
放大器 电磁辐射
例如,OPA209的典型 PSRR 是 0.05uV/V。因此对于OPA209来说,电源变化 1V 时,失调偏移只有 50nV(参见图 1)。这一误差与典型失调电压 (35uV) 相比就无关紧要了。此外,高精度系统中的电源通常支持不足 1V 的电压变量。因此您可能会认为:对于具有良好 PSRR 的器件(例如OPA209)来说电源变化产生的误差可以忽略。问题是数据表中的规范是 DC PSRR,而通常 AC PSRR 才是限制因素。 图 1:OPA209的输入失调及 PSRR 规范 图 2 是OPA2
关键字:
放大器 PSRR
现在许多传统高功率音讯放大器的每通道输出功率在100瓦以上,并且大多采用分离式的电路组件。因此,为了确保输出的稳定性和音效,工程师通常需要花很大精力对高传真音讯放大器进行匹配和调节。
本文以音讯驱动器LME49810为例进行说明,该组件可提供200V的峰峰值输出电压摆幅,并可驱动不同类型的输出级,适合高阶消费和专业级音讯应用,包括主动录音室监视器、超重低音扬声器、音讯/视讯接收器、商用扩音系统、非原厂音响、专业级混音器,分布式音讯和吉他放大器等。此外,也适用于各类高电压及低失真要求的产业用音讯系
关键字:
放大器 LME49810
您有没有考虑过采用差分放大器来替代 RF/IF 信号链路中的平衡-不平衡变压器呢?如果没有,那么您应该考虑一下。虽然它们并不适用于所有的应用,但是全差分放大器 (FDA) 提供了一些优于平衡-不平衡变压器的长处。这里我们列出一些问题,通过回答这些问题可帮助您确定最适合您的设计的是平衡-不平衡变压器还是 FDA。 平衡-不平衡变压器常用于将单端信号转换为差分信号,其可在不增加噪声的同时保持优良的失真指标。用于高速、差分输入模数转换器 (ADC
关键字:
放大器 ADC
在一些情况下,全差分电压反馈型放大器的稳定性似乎受反馈电阻值很大影响—RF/RG比始终正确,这到底是因为什么呢?
信号需要增益时,放大器是首选组件。对于电压反馈型和全差分放大器,反馈和增益电阻之比RF/RG决定增益。一定比率设定后,下一步是选择RF或RG的值。RF的选择可能影响放大器的稳定性。
放大器的内部输入电容可在数据手册规格表中找到,其与RF交互以形成传递函数的中的一个极点。如果RF极大,此极点将影响稳定性。如果极点发生的频率远高于交越频率,则不会影响稳定性。不过,如果通
关键字:
电压反馈型电阻 放大器
与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。虽然提供了许多巧妙、有用并且吸引人的电路。往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能 - 或者可能根本不工作。本文将讨论一些最常见的应用问题,并给出实用的解决方案。
AC耦合时缺少DC偏置电流回路
最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。在图1中,一只电容器与运算放大器的同
关键字:
放大器
本文介绍了防止放大器输出出现过压的电路,以及该电路的正常运行的波形。
对汽车电子的普遍要求是任何直接连接到线束的设备都必须能承受电池电压的短路。尽管这种要求比较严酷,但它对于汽车的可靠性和安全性是十分必要的。一个需要这种保护的例子是音频放大器,它会在汽车内部产生指示灯噪声。尽管这种放大器在低于电池电压的3.3或5V下工作,但它必须能承受电池的满荷电压。适合这种放大器的保护网络,也可以用于其它汽车电路(图1)。一个双N沟道的 MOSFET将放大器的输出与线束断开,以响应每个输出端的高压条件。MOS
关键字:
放大器
最近在做一个AD采集的项目,通过这个项目有一点心得和体会,拿来与大家分享,希望大家能少走弯路,由于水平有限,出错在所难免,希望各位不吝赐教!!
闲言少叙,书归正传。我所处理的项目是弱光信号的采集,整体的架构是使用八只光电池对卤灯的光强进行采集,PD放大器采用了microchip的MCP6002,然后采用了CD4051 MUX进行通道切换,后级又进行了二级的放大和滤波处理,采用的芯片是TI的OPA2727低噪声运放。由于二级的放大倍数也不是固定的,所以又使用了一片CD4051进行通道选择。然后将放
关键字:
放大器 MCP6002
在做滤波器、放大器或者EQ电路设计时,通常需要关注频率与强度的关系,这就是波特图。滤波器、放大器的波特图通常有两部分组成:幅频特性图和相频特性图,这两种图从不同的角度描述滤波电路的特性。在我接触到的EQ电路中,只关注幅频特性关系。幅频特性图中横坐标为频率,单位为Hz,纵坐标为对数关系,通常用分贝(dB)表示,计算关系为20log(Au)。一个典型的波特图如下图所示:
在一些书籍的描述中,经常会出现dB/2倍频、dB/6倍频和dB/10倍频,这都是为了更好的描述幅频特性关系而引入的描述。现在我
关键字:
滤波器 放大器
当表笔接触覆铜板的时候,一切正常。可是当表笔抬起来的时候,仪表放大器的输出端却输出一个诡异方波信号!并且当人的手靠近电路的时候,方波的幅值会发生变化。
暑假电赛培训的时候做过一道13年的国赛真题——手写绘图板。这是题目连接:http://wenku.baidu.com/link?url=QfH4Bz5dOJ9X_cO-25IVbCiPJdvfkUIGazV_-mQVP2uKStj6FfuiJcxiqaaZwkiAp_H24ixY1kHXLpI0NsqE65f5RID-gj
关键字:
放大器
噪声是电子设计中必须处理等信号之一,我们都知道放大器的噪声有两种类型:一种是外部噪声,来源于放大器外部;另一种是内部噪声,来源于器件本身,处理放大器的噪声对于提升电子产品的性能至关重要,这里我们以问答形式对放大器噪声原理进行阐述,并阐述一些如何处理放大器噪声等实用技巧。
Q1[问:] 放大器的内部噪音如何进行精确测量?它和那些因素有关?在测试时需要注意那些问题?
[答:] 对于放大器的噪声的测量,一般来讲就是把放大器的输入接0,输出经过一个低通滤波器,然后用高精度的ADC来采样做FFT,或
关键字:
放大器
Analog Devices, Inc. (ADI),全球领先的高性能信号处理解决方案供应商,最近推出一款中等功率分布式驱动放大器HMC1131,其工作频率范围为24到35 GHz。该放大器提供22 dB的增益和+35 dBm的输出IP3,并在1 dB增益压缩点提供+24 dBm的输出功率。新款放大器可减少实现期望输出功率和小信号增益所需的器件数量,支持更简单的发射配置和更高的集成度,从而降低开发成本,缩短设计时间。HMC1131基于GaAs(砷化镓)pHEMT(赝晶型高电子迁移率晶体管)设计,非常适
关键字:
ADI 放大器
目前,电流检测的阻值非常低,其主要用于测量流经其山的电流。通过该电阻的电流主要是通过电阻两端的电压反映出来,所以通过应用公式I=V/R该公式是由某著名学校的老师乔治-西蒙-欧姆提出的:即电阻上的电流与电压成正比。
上面简单的介绍就当作抛砖引玉了,本文的主题——电阻选择、高边或低边监测以及检测放大器的选择——都是以这个电气工程基本公式为基础的。
电流检测监控有助于提高一些系统的效率,减少损失。例如,许多手机实现了电流检测监控,提高电池寿命,同时
关键字:
放大器
放大器介绍
放大器是能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。
增加信号幅度或功率的装置,它是自动化技术工具中处理信号的重要元件。放大器的放大作用是用输入信号控制能源来实现的,放大所需功耗由能源提供。对于线性放大器,输出就是输入信号的复现和增强。对于非线性放大器,输出则与输入信号成一定函数关系。放大器按所处理信号物理 [
查看详细 ]
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473