首页  资讯  商机   下载  拆解   高校  招聘   杂志  会展  EETV  百科   问答  电路图  工程师手册   Datasheet  100例   活动中心  E周刊阅读   样片申请
EEPW首页 >> 主题列表 >> 开关电源(dcdc)

开关电源(dcdc) 文章 最新资讯

Vishay推出新型第三代1200 V SiC肖特基二极管,提升开关电源设计能效和可靠性

  • 日前,威世科技Vishay Intertechnology, Inc.宣布,推出16款新型第三代1200 V碳化硅(SiC)肖特基二极管。Vishay Semiconductors器件采用混合PIN 肖特基(MPS)结构设计,具有高浪涌电流保护能力,低正向压降、低电容电荷和低反向漏电流低,有助于提升开关电源设计能效和可靠性。日前发布的新一代SiC二极管包括5 A至40 A器件,采用TO-220AC 2L、TO-247AD 2L和TO-247AD 3L插件封装和D2PAK 2L(TO-263AB
  • 关键字: Vishay  SiC肖特基二极管  开关电源  

如何计算DC-DC的电感值?实际案例+8个步骤+计算公式

  • 今天给大家分享的是:如何计算DC-DC电感值。DC-DC 的电感值通常我们很少计算,会直接选择手册里面推荐的值,这在通常场景下快速展开设计和选型没有问题,但是当有特别的电源需求时,就需要自己手动计算电感并选型,才能满足我们的设计指标,本节以降压DC-DC为例讲解如何计算并选择电感。一、降压 DC-DC 的运转环路如下图是在降压型DC-DC中,当开关器件Q1导通时,电流从Vin通过电感L给输出平滑电容Cout充电,并提供输出电流Iout。此时电感L上流过的电流会产生磁场,以此将电能变换成磁能并储存起来。Q1
  • 关键字: DCDC  电感值  

揭秘三相功率因数校正 (PFC) 拓扑结构

  • 三相功率因数校正 (PFC) 系统(或也称为有源整流或有源前端系统)正引起极大的关注,近年来需求急剧增加。推动这一趋势的主要因素有两个。本文为系列文章的第一部分,将主要介绍三相功率因数校正系统的优点。图1总结了一些需要PFC前端的常见应用。首先是汽车电子,经过几年的发展,该领域增长动力强劲,预计未来五年的复合年增长率将达到 30%。充电基础设施,尤其是快速直流 EV 充电桩,需要跟上电动汽车的发展步伐,以有效推动电动汽车的普及。这些 AC/DC 转换系统需要在前端使用三相 PFC 拓扑结构,以高效
  • 关键字: 三相功率因数校正  PFC  电网  开关电源  电磁干扰  

解析开关电源的冲击电流的几种控制方法

  • 开关电源的冲击电流的几种控制方法开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。图3. 通信系统的最大冲击电流限值(AC/DC电源)图4. 通信系统在标称输入电压和最大输出
  • 关键字: 开关电源  冲击电流  控制方法  

开关电源整流滤波电路和钳位保护电路设计

  • 本文介绍输入整流滤波器及钳位保护电路的设计,包括输入整流桥的选择、输入滤波电容器的选择、漏极钳位保护电路的设计等内容,讲解图文并茂且附实例计算。1、输入整流桥的选择1)整流桥的导通时间与选通特性50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从 0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C充电。50Hz交流电的半周期为 10ms,整流桥的导通时间tC
  • 关键字: 开关电源  整流滤波电路  钳位保护  

开关电源电路设计的10个经验

  • 整流桥并联在小功率设计中,一般很少用到整流桥的并联,但在某些大功率输出的情况下,不想增添新的器件单个整流桥电流又不满足输入功率要求,就需要用到整流桥的并联了,整流桥的并联不能采用两个整流桥各自整流后直流并联的方式,也就是不能采用图1的方式,因为整流桥没有配对,单纯靠自身的V-I特性,一般是无法均流的,这样就会造成两个整流桥发热不一致。而采用图2的方式,通常认为在一个封装内的两个二极管是非常匹配的,是可以均分电流的,所以采用图2的方式就可以实现整流桥的并联了。浮地驱动在驱动电路设计中,经常会提到MOS管需要
  • 关键字: 开关电源  电路设计  

详解开关电源占空比选择与比较

  • 占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。占空比占空比一般是指,在开关电源中,开关管导通的时间与工作周期之
  • 关键字: 开关电源  占空比选择  

电源电路设计原来是这么回事?

  • 说起电路设计,可以单独拎出来的特别重要的一项就是电源设计了,毕竟,所有的电子设备都必须在电源电路的支持下才能正常工作。那本次就来简单介绍一下电源电路设计,让普通人也能对电源设计有一个大概的了解。对于电源,目前市场上主要有两种类型:线性电源和开关电源。那么这两种电源有啥区别呢?线性电源的工作原理是先将220V或其他交流电压通过变压器转变为低压电(12V或其他小一点的AC交流电),然后再通过一系列的二极管进行矫正和整流,并且把AC交流电变为脉动电压。得到脉动电压之后,就需要对脉动电压进行滤波,一般通过电容完成
  • 关键字: 开关电源  电路设计  

DC-DC开关电源电路计算

  • Buck电路分析Buck变换器是一种降压式非隔离开关电源,当开关管导通时,输入电源通过电感给输出供电,同时电感存储能量;当开关管关断时,电感通过续流二极管给输出供电;如此反复即可维持输出产生一个恒定的电压。其Buck电路拓扑结构以及电路分析计算见下图。Boost电路分析Boost变换器是一种降压式非隔离开关电源,当开关管导通时,输入电源通过电感给电感充电,电感存储能量;当开关管关断时,输入电源和电感能量通过续流二极管给输出供电;如此反复即可维持输出产生一个恒定的电压。其Boost电路拓扑结构以及电路分析计
  • 关键字: 开关电源  电路设计  

PCB开关电源设计技巧

  • 一、开关电源电路 4 个组成部分首先,要设计开关电源电路,就需要明确的电路要求和规格,电源有 4个重要部分:1、输入和输出过滤器2、用于驱动器的驱动器电路和相关组件,尤其是控制电路。3、开关电感器或变压器4、输出桥和相关的滤波器1、输入和输出过滤器输入和滤波器部分是嘈杂或未调节的电源线连接到电路的地方。因此,输入滤波电容需要与输入连接器和驱动电路保持均匀的间距,必须始终使用较短的连接长度将输入部分与驱动器电路连接起来。上图中突出显示的部分表示滤波电容的紧密放置2、用于驱动器的驱动器电路和相关组件,尤其是控
  • 关键字: 开关电源  电路设计  

开关电源PCB设计

  • PCB设计是开关电源设计非常重要的一步,对电源的电性能、EMC、可靠性、可生产性都有关联。当前开关电源的功率密度越来越高,对PCB布局、布线的要求也越发严格,合理科学的PCB设计让电源开发事半功倍,以下细节供您参考。一、布局要求PCB布局是比较讲究的,不是说随便放上去,挤得下就完事的。一般PCB布局要遵循几点:图13、放置器件时要考虑以后的焊接和维修,两个高度高的元件之间尽量避免放置矮小的元件,如图2所示,这样不利于生产和维护,元件之间最好也不要太密集,但是随着电子技术的发展,现在的开关电源越来越趋于小型
  • 关键字: PCB  电路设计  开关电源  

电源工程师必看,离线开关电源 (SMPS) 系统设计保姆级教程

  • 离线开关电源 (SMPS) 是根据终端负载将电网电源转换为直流电源的经典产品。通常,这种开关电源包含两个转换级,为了实现更高的效率,需要采用性能更好的电源开关或实施不同的控制策略。此外,根据具体情况选择更合适的拓扑也很重要。本系统方案指南将介绍有关离线 SMPS 的基础知识,以及安森美 (onsemi)的精选产品和解决方案。本文为第一部分,将重点介绍系统用途、系统实现、系统描述、市场信息和趋势。系统用途自上个世纪以来,离线 SMPS 一直备受瞩目,相关研究层见迭出,并广泛应用在日常生活的方方面面。离线 S
  • 关键字: 安森美  开关电源  SMPS  

如何最大程度降低开关电源中的寄生参数

  • 开关模式电源(开关电源)因其高效性和灵活性而广受欢迎。但它们也带来了挑战,因为其应用已经延伸到新的领域。最明显的是,其高频切换会对系统的其他部分产生电磁干扰 (EMI)。此外,导致 EMI 的因素同样也会降低效率,从而削弱开关电源关键的能效优势。为了避免这些问题,设计人员在配置“热回路”(电源电路中发生快速开关的部分)时必须特别小心。将等效串联电阻 (ESR) 和等效串联电感 (ESL) 造成的热回路寄生损耗降至最低至关重要。这可以通过选择高度集成的电源元件和精心设计的印刷电路板(PC
  • 关键字: Digikey  开关电源  寄生参数  

TL431与光耦组成的电压反馈

  • 开关电源最基本的要求是输入电压变化时,输出电压保持恒定,而与此相关的测试如电压调整率、负载调整率等也是衡量开关电源性能的重要指标,实现输出电压恒定的方式是反馈,即输出电压的改变可以反馈至电源管理芯片FB脚(feedback),再通过调节开关管的脉宽实现输出电压动态平衡。绝大多数开关电源都是使用TL431与光耦组成的反馈电路,非常经典,也应用了很多年。它的优点是精度能满足大多数场合要求,成本低,环路稳定成熟。箭头所指框内就是TL431与光耦组合在分析反馈电路之前,先来了解一下TL431的工作原理,TL431
  • 关键字: 开关电源  电路设计  TL431  光耦  

一文搞懂开关电源和普通电源的区别

  • 什么叫开关电源随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源是相对线性电源说的,其输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。在电感(高频变压器)的帮助
  • 关键字: 开关电源  电路设计  
共1951条 3/131 « 1 2 3 4 5 6 7 8 9 10 » ›|

开关电源(dcdc)介绍

您好,目前还没有人创建词条开关电源(dcdc)!
欢迎您创建该词条,阐述对开关电源(dcdc)的理解,并与今后在此搜索开关电源(dcdc)的朋友们分享。    创建词条

热门主题

树莓派    linux   
关于我们 - 广告服务 - 企业会员服务 - 网站地图 - 联系我们 - 征稿 - 友情链接 - 手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
备案 京ICP备12027778号-2 北京市公安局备案:1101082052    京公网安备11010802012473