新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 电流源(08-100)

电流源(08-100)

—— 电流源
作者:Dave Van Ess 赛普拉斯半导体公司 MTS 产品部应用工程师时间:2009-03-09来源:电子产品世界收藏

  通过二极管的偏置电流会使负输入端电压比输出端低 1 个二极管压降。负反馈使输入匹配于负载电压,也应比输出电压低 1 个二极管压降,如下方程式所示:

本文引用地址:http://www.eepw.com.cn/article/92217.htm

  负反馈使运算放大器调节其输出,使之与输入电压相匹配,当输出电压比负载电压高 1 个二极管压降时该情况发生。

  将电阻从输出端连接至正输入端。同样,电阻上的电压是 1 个二极管压降。负载电流由电阻 (Rset) 来设定,如下式所示:

  现在您可能会想,如果电阻提供正反馈与负反馈,电路怎么还能继续工作呢?没错,电阻确实提供正反馈,但负载的电阻会让其小于单位增益。不过,负反馈不会衰减(仅略微降低),因此负反馈大于正反馈,净反馈为负。只有偏置电压小于负载电压时,二极管才传导电流。

  这种电路很容易构建。其主要局限性在于二极管会获得一定的参考电压。压降是温度的函数。不过对许多应用来说,这种性能已经足够了。这种只能支持一组设定的电压值,但是有些应用还需要压控

  压控运算放大器

  我们可以很容易设计出增益为 2 的运算放大器。假设反馈电阻实际就是分压器,负载电压增益为 2,那么衰减后就变成单位增益。图3给出了这种拓扑结构的示意图。

 

  图 3 运算放大器可变电流源

  运算放大器的输出是负载电压的两倍,随后通过一对置位电阻 (set resistor) 衰减。我们针对该分压器采用戴维南 (Thevenin) 等效定理,可以直接得出负载电流,如下式所示:

  该电路的优势在于,它能支持可变置位电压 (variable set voltage),而且只需采用一个运算放大器即可。其最大的不足在于工作范围有限。输出电压是负载电压的两倍。具有 ±5 V 电源以及轨至轨输出的运算放大器仅能支持 ±2.5 V的 Vload 范围。

  改进的压控运算放大器电流源

  假设信号在翻倍后没有衰减,而是在翻倍之前衰减,那么就可以解决电压范围的局限性问题了。图4示出了这种拓扑结构的示意图。

 

  图 4 改进的运算放大器可变电流源



评论


相关推荐

技术专区

关闭