新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于IPv6 的高清视频系统实现与性能分析

基于IPv6 的高清视频系统实现与性能分析

作者:时间:2013-04-02来源:网络收藏


(1) 发送引擎监测:在发送端记录发送数据包的序列号和时间戳;同时统计单位时间内发送的包数,实时计算发包速率。

(2) 网络传输测量:测量系统发送端与接收端之间链路的拥塞状况。 此功能是通过定时发送一定数量的ICMP 报文然后统计应答报文来实现,可以得到网络层丢包率等参数。

(3) 接收组帧引擎监测:监测接收组帧引擎接收数据包与解包( depacketize) 的情况,解包后可以得到各包的序列号和时间戳;在多种时间粒度下作统计,可以得到应用层丢包率等参数。需要指出,在统计丢包率时要首先定义统计的时间粒度。 时间粒度的选取不仅要注意应尽可能精确以利于编程计算丢包率,同时要注意,由于相同Sample 的43 个包被认为是逻辑上同时产生的,它们的时间戳是相同的,分开统计既不符合逻辑规律也不符合实际的物理组帧规律。 考虑到这一点,统计丢包的时间单位的划分时刻必须选在Sample 的边界上。

网上的应用

在国内 网上的应用

2004 年3 月19 日,基于 的HDV 视频系统首次在国内IPv6 试验网CERNET2 上试用,视频源采用JVC-HDR 摄像头(720p) ,视频发送地点为清华大学,视频接收点为北京国际会议中心的演示大厅。 网络线路为带宽100 Mbp s 的共享线路;在网络负载较轻时,图像基本流畅。 当网络上其他应用较多时,会出现丢包和抖动。

在国际IPv6 网上的应用

2005 年3 月,清华大学和韩国KAIST 大学之间通过国际互联的IPv6 网络进行了HDV 的对传试验,两端点间的网络连接配置如图2 所示。

双方发送和接收端地址如表1 所示。 该试验中,网络跨越了中韩两国,国际互联带宽为155 Mbps ,途经的路由器均支持IPv4/ Ipv6 双栈协议。 由于中间网络条件比较复杂,试验过程中出现了马赛克和抖动现象。 当网络拥塞导致丢包率大过一定阈值时,图像会出现短时间停滞。

表1  中韩HDV 系统IPv6 测试收发端地址

对网络背景流量的依赖性和敏感性

HDV 系统的性能可通过观察接收端的视频质量感受,如是否流畅、是否出现抖动或马赛克等。 利用测量子系统,对HDV 系统在接收端的视频质量和丢包率进行了比较。 结果表明,接收端看到的视频质量(主观) 与系统的丢包率(即客观测量得到的应用层丢包率) 有着一一对应关系,即系统的丢包率越大,视频质量的下降越明显。 因此作者可以以系统的丢包率来反映接收端视频质量的下降,以丢包率的平均值反映接收端视频质量下降的平均水平,丢包率的方差和峰值反映接收端视频质量的波动(偏离平均水平的程度) 。

为定量分析HDV 系统性能对网络背景流量的依赖性和敏感性,本文设计了一个网络背景流量逐级增加的试验:用流量发生器逐级注入流量,同步记录HDV 传输系统在网络载荷增加各时刻的丢包率。 根据记录的数据绘制网络背景流量和丢包率关系图。

图3 表示系统平均丢包率与注入网络背景流量的关系,图4 表示系统丢包率方差(a) 和丢包率峰值(b) 与注入网络背景流量的关系。

从图3 可以看出,网络背景流量增加时,系统的平均丢包率相应增加。 二者近似为线性单调关系,符合一般的规律。

由图4 (a) 可以看出,随着人为网络背景流量的增加,系统丢包率方差并不是单调增加的。 在背景流量超过35 Mbps (此时网络载荷接近饱和) 以后,系统的丢包率方差曲线呈现波动性状。 即背景流量降低并不意味着丢包率方差的降低,此时丢包率方差反可能升高,体现出和平均丢包率不同的性态,主观感觉就是视频图像偏离平均水平的变坏程度(停顿或花屏) 并不会因为背景流量的降低而降低,而是过了一定背景流量阈值后就有着较高的丢包率方差(丢包峰值表现类似,见图4 ( b) ) 。 这种性态显示了高清视频传输的丢包率方差和丢包率峰值对网络背景流量的改变不敏感,可从HDV 应用本身流量载荷较大的角度去理解。 同时可看出当注入的背景流量超过一定阈值后(图中为35 Mbps) ,平均丢包率和丢包率方差会显著增加。



评论


相关推荐

技术专区

关闭