新闻中心

EEPW首页 > 光电显示 > 设计应用 > 图解:LED背光照明与散热技术

图解:LED背光照明与散热技术

作者:时间:2011-06-25来源:网络收藏
当led于60年代被使用后,过去因LED使用功率不高,只能拿来作为显示灯及讯号灯,封装散热问题并未产生,但近年来使用于背光的LED,其亮度、功率皆持续的被提升,因此散热逐渐成为LED产业的首要问题。

  LED量产且被大量使用后,其发光亮度以突飞猛进的速度上升,由2001年的25lm/W,2006年6月日亚化学工业宣布实验室可达134lm/W,2007年2月Lumileds公司可达到115lm/W,2008年7月欧司朗则研发可达到136lm/W之LED,Cree实验室于2008年11月可达161lm/W,进步至2009年初,日亚化学工业发表的发光效率已可达249lm/W,而量产的LED于2010年将一举突破100lm/W之水准。

  依据过去30年LED发展观察,LumiledsLighting公司的RolandHaitz先生于2003年归纳出LED界的Moore(摩尔)定律—Haitz定律(如图1所示),说明LED约每18~24个月可提升一倍的亮度,以此定理推估10年内LED亮度可以再提升20倍,而成本将可降90%以达到可完全取代现有技术,因此LED照明于近几年火热的被重视与探讨。

  照明

  LED因耗电低、不含汞、寿命长、体积小、降低二氧化碳排放量等优势吸引国内、外厂商极力推广取代现有照明。LED主要照明可分为显示背光、车用照明、交通号志与室内室外照明,而背光模组于2009年被广泛的应用于笔记型电脑面板上,此后亦逐渐被使用到家用电视机,其约占了50%之面板模组零组件制造成本与消耗约70%显示器之电能,故背光照明为显示面板最重要的关键。然液晶显示器无法自行发光,因此需要背光模组作为光线的来源,所以背光源的好坏会影响显示的效果甚剧。加上面板需薄型化的因素,因此多以CCFL灯管作为背光源,而源比起CCFL有演色性佳、寿命长、反应速度快等优势(如表1)。

  再加上近年来由于全球提倡环保议题,各国政府的禁汞环保政策,如欧盟的WEEE与RoHS指令与中国的电子信息产品生产污染防治管理办法等陆续推行,也驱使小体积封装之LED成为替代CCFL的最佳无汞灯源。又由于LED单位成本发光效率持续快速成长中,使得LED成本跌幅扩大,缩小了CCFL与LED的价差,也促使面板厂商开始大幅导入LED于背光模组。

  基于上述理论,将LED元件热阻扩大运用至背光散热模组中,因大面积面板薄型化的需求,在极小空间中使用高热源密度元件,所以除了自然对流外,还需辅以风扇方式进行强制对流增加散热。

  LED所产生的热,大多经由基板传递到载板散热片上,再以水平方式迅速传递至整个载板之上,此热最后垂直传导到大面积的筐体上,促成筐体表面的热对流和放射,利用通风孔的热空气上升流动或风散强制对流造成热移动将热量带走。另外,由等效热阻图(图3)可观察出,散热基板为整个背光散热模组的传递核心,此说明将散热基板热阻降低,对整体的散热效益提升就越明显。  

 

  LED散热封装

  降低LED热累积的方式有主要有以下三种,一为改善晶粒特性,在晶粒制作阶段,增加发光效率降低发热的能量配置,此外传统式晶片皆以蓝宝石(sapphire)作为基板,其蓝宝石的热传导系数约只有20W/mK,不易将磊晶层所产生的热快速地排出至外部,因此Cree公司以具高热传导系数的“矽”来取代蓝宝石,进而提升散热能力。

  另外,改用越大尺寸的晶粒LED热阻值就越小。二为固晶(DieBonding)方式,由打线(WireBonding)改为覆晶(Flip-Chip),传统LED封装使用打线方式,但相对于金属,蓝宝石传热相当慢,所以热源会从金属线传导,但散热效果不佳。Lumileds公司将晶粒改以覆晶方式倒置于散热基板上,欲排除蓝宝石不要在热传导路径上,并在几何结构上增加传热面积以降低热阻。三为封装基板采用氧化铝、氮化铝、氧化铍及氮化硼等高导热以及与LED热膨胀系数匹配的材料,进而降低整个散热基板总热阻方式。

  以下将LED散热封装材料之比较列于表3,早期LED以炮弹型方式进行封装,其散热路径中有一小部分热源经保护层往大气方向散热,大多热源仅能透过金属架往基板散热,此封装热阻相当地大,达250~350℃/W。进而由表面贴合方式(SMD)于PCB基板上封装,主要是藉由与基板贴合一起的FR4载板来导热,利用增加散热面积的方式来大幅降低其热阻值。但此低成本的封装要面临的问题是,FR4本身热传导系数较低,膨胀系数过高,且为不耐高温的材料,在高功率的LED封装材料上不太适用。

  因此,再发展出内具金属核心的印刷电路板(MetalCorePCB;MCPCB),是将原印刷电路板贴附在金属板上,运用贴附的铝或铜等热传导性较佳的金属来加速散热,此封装技术可用于中阶功率的LED封装。MCPCB的铝基板虽有良好的导热系数,但还需使用绝缘层来分离线路,但绝缘材多有热阻、热膨胀系数过高的缺点,作为封装高功率LED时较不适合。近期还有DBC(DirectBondCopper)与DPC(DirectPlatedCopper)技术被使用,DBC热压铜于陶瓷板技术虽有良好的散热系数,但密合强度、热应力与线路解析度等问题仍有待解决。

  在陶瓷材料上以DPC成型之基板,具有耐高电压、耐高温、与LED热膨胀系数匹配等优势外,还可将热阻下降到10℃/W以下,故此为现今最合适用在封装高密度排列之HBLED散热材料。

  结论

  随着大尺寸薄型化LEDTV的市场需求逐年增加,其所需背光源的亮度也随之增加,导致大量的高功率LED须于狭小电视筐体中紧密排列,使得高效率散热基板的需求愈来愈大,因此由大毅科技坚强的技术团队于2010年所研发出的以DPC基板技术大量生产的陶瓷散热基板,将满足日益扩大的LEDTV背光模组散热需求。



评论


相关推荐

技术专区

关闭