新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 电荷泵的工作原理及常用电路

电荷泵的工作原理及常用电路

作者:时间:2012-11-07来源:网络收藏
后以受控方式释放能量,以获得所需的输出电压。开关式调整器升压泵采用电感器来贮存能量,而电容式采用电容器来贮存能量。

  的结构

  电容式通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量。电荷泵是无须电感的,但需要外部电容器。由于工作于较高的频率,因此可使用小型陶瓷电容(1mF),使空间占用小,使用成本低。电荷泵仅用外部电容即可提供±2 倍的输出电压。其损耗主要来自电容器的ESR(等效串联电阻)和内部开关晶体管的RDS(ON)。电荷泵转换器不使用电感,因此其辐射EMI可以忽略。输入端噪声可用一只小型电容滤除。它的输出电压是工厂生产精密预置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间。电荷泵十分适用于便携式应用产品的设计。从电容式电荷泵内部结构来看,如图2 所示它实际上是一个片上系统。

  电荷泵的工作原理及常用电路

  图2 电容式电荷泵内部结构

  电荷泵

  电荷泵变换器的基本如图3所示。它由振荡器、反相器及四个模拟开关组成,外接两个电容C1、C2 构成电荷泵电压反转电路。

  电荷泵的工作原理及常用电路

  振荡器输出的脉冲直接控制模拟开关S1及S2;此脉冲经反相器反相后控制S3及S4。当S1、S2 闭合时,S3、S4 断开;S3、S4 闭合时,S1、S2 断开。

  当S1、S2 闭合、S3、S4 断开时,输入的正电压V+向C1 充电(上正下负),C1 上的电压为V+;当S3、S4闭合、S1、S2断开时,C1向C2放电(上正下负),C2上充的电压为-VIN,即VOUT=-VIN。当振荡器以较高的频率不断控制S1、S2 及S3、S4 的闭合及断开时,输出端可输出变换后的负电压(电压转换率可达99%左右)。

  由图3 可知,电荷泵电压反转器并不稳压,即有负载电流时,输出电压将有变化。输出电流与输出电压的变化曲线(输出特性)称为输出特性曲线,其特点是输出电流越大,输出电压变化越大。

  一般以输出电阻Ro来表示输出电流与输出电压的关系。若输出电流从零增加到Io时,输出电压变化为△V,则输出电阻Ro 为:

  Ro = △V/Io

  输出电阻Ro 越小,输出电压变化越小,输出特性越好。

  如何选择电荷泵

  1、效率优先,兼顾尺寸

  如果需要兼顾效率和占用的 PCB 面积大小时,可考虑选用电荷泵。例如电池供电的应用中,效率的提高将直接转变为工作时间的有效延长。通常电荷泵可实现 90% 的峰值效率,更重要的是外围只需少数几个电容器,而不需要功率电感器、续流二极管及 MOSFET。这一点对于降低自身功耗,减少尺寸、BOM 材料清单和成本等至关重要。

电容器相关文章:电容器原理


电路相关文章:电路分析基础


dc相关文章:dc是什么


电荷放大器相关文章:电荷放大器原理
电流传感器相关文章:电流传感器原理
电容相关文章:电容原理
电容传感器相关文章:电容传感器原理


关键词: 电荷泵 工作原理

评论


相关推荐

技术专区

关闭