新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于STM32的数字示波器设计与实现

基于STM32的数字示波器设计与实现

作者:时间:2011-05-24来源:网络收藏


2 波器的硬件设计
2.1 系统硬件总体框图
系统硬件总体框图如图1所示,主要由控制单元,信号输入阻抗匹配单元,信号调理单元,A/D采样与FIFO存储单元,时钟单元,TFT显示单元等组成。输入信号经阻抗匹配后,送入信号调理单元,将信号的幅度放大或衰减到适合A/D采样的范围内,A/D采样单元对幅度为2VPP的信号进行A/D采样,并将采样结果存入FIFO单元中。CPU从FIFO中读存数据并进行内插运算,然后根据用户通过键盘输入的指令将信号波形显示在TFT液晶屏上。另外,CPU还可以将数据通过RS2接口上传给上位机,或进行打印等处理。

本文引用地址:http://www.eepw.com.cn/article/194938.htm

c.jpg


2.2 输入阻抗匹配电路
对于低速数据采集,由于信号反射对信号的传输过程影响微乎其微,所以低速数据采集系统良好的高阻抗性能,对提高系统的测量精确度有很大的意义。本设计中采用电压跟随器实现阻抗变换,数据采集阻抗变换电路的设计方案如图2所示,其输入阻抗为10MΩ。

d.jpg


2.3 信号调理电路
信号调理电路主要采用具有可变增益的数字程控放大器AD8260。AD8260是AD公司生产的一款大电流驱动器及低噪声数字可编程可变增益放大器。该器件增益调节范围为-6 dB~+24 dB,可调增益的-3 dB带宽为230MHz,可采取单电源或双电源供电。主要用于数字控制自动增益
系统、收发信号处理等领域。本设计主要使用其数字控制自动增益功能。AD8260内部的数字程控增益功能框图如图3所示。经阻抗匹配后的信号可直接输入AD8260的17、18脚,经AD8260内部前端放大器6 dB的固定增益放大,-30 dB程控衰减以及末级放大器18 dB固定增益放大后,由7和8脚输出。第11、12、13、14脚为四位数字控制信号(D0、D1、D2、D3),与的I/O口直接连接,实现增益控制。表3给出了AD8260增益调节真值表。

e.jpg


2.4 A/D和FIFO电路
在数据采集电路设计中,选用BB公司的8位高速AD转换器ADS830E,最高采样频率为60 MSa/s,最低采样频率为10 kSa/s。8位转换精度的显示分辨率为256格,能够满足所选用分辨率为640*480的TFT显示模块。FIFO存储器采用IDT7204高速缓存,其缓存深度达1 024 K。FIFO存储器是一种双口的SRAM,没有地址线,随着写入或读取信号对数据地址指针进行递加或递减,来实现寻址。
2.5 时钟电路
时钟产生电路为AD转换器提供一系列的采样时钟信号,共有8种频率,分别对应着不同的水平扫速。时钟产生电路主要由高稳定度的温补晶振,分频器74LS390,多路选择器74F151以及分频器74F74触发器构成。基准时钟信号由一块60 MHz的温度补偿型有源晶体模块提供,输出的60 MHz信号经过分频器的多次分频得到8种不同的频率,然后送入多路选择器74F151。32通过对74F151的三根选通信号线进行控制来选择所需的采样频率。另外,中央控制器采用STM32处理器,主频设为80 MHz。显示器采用分辨率为640*480的TFT显示模块,与STM32之间采用SPI接口。与其它上位机通信采用RS232口。



评论


相关推荐

技术专区

关闭