新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于再生能源系统的高效能电力转换器设计

基于再生能源系统的高效能电力转换器设计

作者:时间:2011-06-16来源:网络收藏

本文引用地址:http://www.eepw.com.cn/article/179005.htm

  2 电路工作原理

  图2及图3分别为本文提出一新型低输出电流涟波升压型电路及其主要电压、电流波形。电路的组成,包括一输入电感器Li,一变压器T1,两个半导体开关元件Q1-Q2,一个箝位电容器C1,一个输出电容器C0,及两对两两串接在一起的整流二极体D1-D2-D3-D4。其中变压器一次侧有两组绕组P1-P2,二次侧有两组绕组S1-S2,及两组分别标示为L1-L2的二次侧漏感。各组的匝数比,分别为P1:P2:S1:S2=1:1:N:N。

  为简化电路的分析,假设:所有的半导体元件为理想;输入电感器Li值足够大,因此可视为一理想电流源;箝位电容器C1,一个输出电容器C0足够大,因此可视为一理想电压源;漏感L1=L2。

  本电路的工作原理,可区分为四个时区间,分别如图4(a)-(d)所示。

  (a)T0-T1

  如图4(a)所示,闸级控制信号VGS1于T0加诸于半导体开关元件Q1。因此,半导体开关元件Q1和Q2同时被导通,变压器一次侧两绕组P1-P2因此被短路,导致一次侧输入电压跨在输入电感器Li,处于充电状态,电感电流因而呈线性上升。而在二次侧,因整流二极体D1-D4,无法获得导通的顺向偏压,均呈现关断状态。此时,一半的负载电流由输出电容C0提供,另一半则由箝位电容器C1经由C1(+)-S1-L1-R-S2-L2-C1(-)路径提供。由于箝位电容器能分摊此一时区间所需要的负载电流,输出电容的电流涟波得以降低为负载电流的一半。因此,得以选用较小数值的输出电容器。另外,因为二次侧绕组极性相反,跨在此二绕组上的电压互相抵消,使得箝位电容器的平均电压被箝制等于输出电压值V0。

  (b)T1-T2

  如图4(b)所示,闸级控制信号VGS2于T1被移除。在此一时区间,一次侧输入电压及电感电压总和,跨在变压器一次侧P1绕组,经由变压器二次侧绕组S1,整流二极体D1-D2路径,将大部分的输入功率传送到负载。同时,部分的输入功率也分别对输出电容C0及箝位电容器C1,经由S1-L1-C0-D2-D1-S1和S2-D2-D1-C1-L2-S2路径进行充电。此时,二极体D3-D4,分别因D1-D2的导通,而被箝制于输出电压值V0。



评论


相关推荐

技术专区

关闭