新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 单片机关键技术基础详解(五)

单片机关键技术基础详解(五)

作者:时间:2012-03-20来源:网络收藏

  采用好的系统设计模式:

  尽量不使用传统的前后台(中断)系统设计模式,任务之间相互影响和干扰,无法定时操作。如设计一个采用动态扫描方式驱动的8位LED数码管显示+动态扫描的4*4矩阵键盘。

  采用TimeTip+状态机设计+CASE结构,实现多任务并行运行系统设计方法。或时间触发式的系统设计。(见:《时间触发嵌入式系统设计模式》中国电力出版社 2004.6)

  移植小型嵌入式操作系统,如UCOS-II。在网上有些免费的基于AVR的简洁的操作系统。

  提高C语言的编程能力和软件应用水平:

  熟悉和用好C中的数据结构体、指针应用、内存管理等较高级的应用。

  熟悉和了解你所使用的高级语言开发平台的特点。这些平台是针对某一类处理器的,包含许多特殊的不兼容的语句和扩展的结构、语句、函数等。尽管使用方便,但由于其不透明性和时间的不确定性,因此要合理使用。如C中的Getchar()、Putchar()等。AVR有多个开发平台,每个都有其特点和不足。能够综合使用这些平台,相互互补,能够提高开发效率。如通过ICC、CVAVR的程序生成器CodeWizard学习和了解AVR的硬件设置,简化计算,快速的生成程序基本模块,如“一个URAT(RS232)低层驱动+中间层软件示例”。

  四、AVR定时器输出PWM的设计及注意问题

  一、定时/计数器PWM设计要点

  根据PWM的特点,在使用ATmega128的定时/计数器设计输出PWM时应注意以下几点:

  1.首先应根据实际的情况,确定需要输出的PWM频率范围,这个频率与控制的对象有关。如输出PWM波用于控制灯的亮度,由于人眼不能分辨42Hz以上的频率,所以PWM的频率应高于42Hz,否则人眼会察觉到灯的闪烁。

  2.然后根据需要PWM的频率范围确定ATmega128定时/计数器的PWM工作方式。AVR定时/计数器的PWM模式可以分成快速PWM和频率(相位)调整PWM两大类。

  3.快速PWM可以的到比较高频率的PWM输出,但占空比的调节精度稍微差一些。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。PWM频率的计算公式为:

  PWM频率 = 系统时钟频率/(分频系数*(1+计数器上限值))

  4.快速PWM模式适合要求输出PWM频率较高,但频率固定,占空比调节精度要求不高的应用。

  5.频率(相位)调整PWM模式的占空比调节精度高,但输出频率比较低,因为此时计数器仅工作在双向计数方式。同样计数器的上限值决定了PWM的频率,比较匹配寄存器的值决定了占空比的大小。PWM频率的计算公式为:

  PWM频率 = 系统时钟频率/(分频系数*2*计数器上限值))

  6.相位调整PWM模式适合要求输出PWM频率较低,但频率固定,占空比调节精度要求高的应用。当调整占空比时,PWM的相位也相应的跟着变化(Phase Correct)。

  7.频率和相位调整PWM模式适合要求输出PWM频率较低,输出频率需要变化,占空比调节精度要求高的应用。此时应注意:不仅调整占空比时,PWM的相位会相应的跟着变化;而一但改变计数器上限值,即改变PWM的输出频率时,会使PWM的占空比和相位都相应的跟着变化(Phase And Frequency Correct)。

  8.在PWM方式中,计数器的上限值有固定的0xFF(8位T/C);0xFF、0x1FF、0x3FF(16位T/C)。或由用户设定的0x0000-0xFFFF,设定值在16位T/C的ICP或OCRA寄存器中。而比较匹配寄存器的值与计数器上限值之比即为占空比。
二、 PWM应用参考设计

  下面给出一个设计示例,在示例中使用PWM方式来产生一个1KHz左右的正弦波,幅度为0-Vcc/2。

  首先按照下面的公式建立一个正弦波样本表,样本表将一个正弦波周期分为128个点,每点按7位量化(127对应最高幅值Vcc/2):

  F(X) = 64 + 63 * Sin(2πx/180) X∈[0…127]

  如果在一个正弦波周期中采用128个样点,那么对应1KHz的正弦波PWM的频率为128KHz。实际上,按照采样频率至少为信号频率的2倍的取样定理来计算,PWM的频率的理论值为2KHz即可。考虑尽量提高PWM的输出精度,实际设计使用PWM的频率为16KHz,即一个正弦波周期(1KHz)中输出16个正弦波样本值。这意味着在128点的正弦波样本表中,每隔8点取出一点作为PWM的输出。

  程序中使用ATmega128的8位T/C0,工作模式为相位调整PWM模式输出,系统时钟为8MHz,分频系数为1,其可以产生最高PWM频率为: 8000000Hz / 510 = 15686Hz。每16次输出构成一个周期正弦波,正弦波的频率为980.4Hz。PWM由OC0(PB4)引脚输出。参考程序如下(ICCAVR)。

  //ICC-AVR Application Builder : 2004-08

  // Target : M128

  // Crystal: 8.0000Mhz

  #Include

  #Include

  #Pragma Data:code

  // 128点正弦波样本表

  Const Unsigned Char Auc_SinParam[128] = {

  64,67,70,73,76,79,82,85,88,91,94,96,99,102,104,106,109,111,113,115,117,118,120,121,

  123,124,125,126,126,127,127,127,127,127,127,127,126,126,125,124,123,121,120,118,

  117,115,113,111,109,106,104,102,99,96,94,91,88,85,82,79,76,73,70,67,64,60,57,54,51,48,

  45,42,39,36,33,31,28,25,23,21,18,16,14,12,10,9,7,6,4,3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,4,6,

  7,9,10,12,14,16,18,21,23,25,28,31,33,36,39,42,45,48,51,54,57,60};

  #Pragma Data:data

  Unsigned Char X_SW = 8,X_LUT = 0;

  #Pragma Interrupt_handler Timer0_ovf_isr:17

  Void Timer0_ovf_isr(Void)

  {

  X_LUT += X_SW; // 新样点指针

  If (X_LUT 》 127) X_LUT -= 128; // 样点指针调整

  OCR0 = Auc_SinParam[X_LUT]; // 取样点指针到比较匹配寄存器

  }

  Void Main(Void)

  {

  DDRB |= 0x10; // PB4(OC0)输出

  TCCR0 = 0x71; // 相位调整PWM模式,分频系数=1,正向控制OC0

  TIMSK = 0x01; // T/C0溢出中断允许

  SEI(); // 使能全局中断

  While(1)

  {……};

  }

  每次计数器溢出中断的服务中取出一个正弦波的样点值到比较匹配寄存器中,用于调整下一个PWM的脉冲宽度,这样在PB4引脚上输出了按正弦波调制的PWM方波。当PB4的输出通过一个低通滤波器后,便得到一个980.4Hz的正弦波了。如要得到更精确的1KHz的正弦波,可使用定时/计数器T/C1,选择工作模式10,设置ICR1=250为计数器的上限值。
 五、C51矩阵键盘扫描去抖程序

  这段有1个C51的项目,用的是新华龙的C51 F020。项目中要使成为事实4*5的矩阵键盘。矩阵电路图如次如示

  矩阵电路图

  此中,四条列线接在 F020的P2~P5口线上,5条行线接在P5口线上(F020的P5口是差别于平凡C51的扩大接口,不克不及位寻址)。同时4条列线接在一四输入与非门(74LS20)上,门输出接F020的外间断1,如许,不论什么一键按下,都会孕育发生间断,报信程序举行键盘电子扫描。

  托1个新手给写了键盘的电子扫描程序,基本功效都能使成为事实,但对键盘的去抖措置惩罚老是做欠好,体现是或不克不及去抖,或按钮相应太卡,或采集到纰缪键值。看来新手对矩阵键盘电子扫描原理掌握较好(网上资料多),但对键盘去抖的知识却有所欠缺,基本都是按照书上说的延时一段时间再采集键值,现实应用中,如许的措置惩罚是远远不敷的,过于简单。现实去抖措置惩罚应该如许举行更合理一些,即连续采集键值,当采集到的键值在一段时间内是不异的,即以为按钮状况已经稳定,此键值为真实键值。别的,按钮开释时,也会有抖动,导致误采键值,是以在键开释时,也应举行去抖措置惩罚,措置惩罚要领同时是连续一段时间采集到无键按下状况,才以为按钮被开释。按照这个要领,我重写了新手的程序,现实应用中体现极好。

tcp/ip相关文章:tcp/ip是什么




评论


相关推荐

技术专区

关闭