新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 一种多开关结构的固态功控系统的设计开发

一种多开关结构的固态功控系统的设计开发

作者:时间:2011-01-13来源:网络收藏

  如果AD7874为12位,则SNR=70dB左右,在应用中一般已经足够,字长过长并不是非常必要,因为输入模拟信号本身有一定的信噪比,A/D转换器的量化噪声比模拟信号的噪声电平更低是没有意义的。

  2、量采集模块。上位机下传的控制信号,由于存在各种干扰,使得量在实验中经常出现抖动,另一方面,电路中经过比较器得到的量(如STA _SSPC),由于主电路中的电流不稳定,偶尔出现电流过冲,使得送到CPLD的开关量信号也会出现抖动;这些都会导致SSPC经常误动作,为此,需要设计一个专门的开关量去抖动电路,降低SSPC误动作的概率。实际中采用的是延迟电路后级加上R-S触发器,具体的工作原理如下所述:先将输入信号先引至输入端,经过两级的D触发器延迟后,然后再通过RS触发器作处理。

 3、整个数据分析过程包括以下几部分:

  (1) 当电流在额定范围内,SSPC正常工作;

  (2) 电流大于额定电压,小于额定电压的800%时,SSPC进入反时限保护;

  (3) 当电流大于额定电流的800%时,SSPC立刻跳闸。

  4、逻辑判断模块。逻辑判断模块将采集到的电流信号、接收到的控制命令和内部状态,经过逻辑判断后,综合得出电力MOSFET的导通/关断指令,作为驱动电路的输入信号。程序流程如图5所示。在对SSPC的控制中,最容易出现的问题就是误动作,为此,采用了较为复杂的控制逻辑,以此降低SSPC误动作的概率。SSPC的控制是通过“相邻两位、多条指令”两个步骤来完成的,只有几个条件同时满足才能使SSPC动作,缺一不可,这就大大降低了SSPC误动作的概率。

MOSFET的驱动信号产生流程图

图5 MOSFET的驱动信号产生流程图

  本文作者创新点

  本文基于CPLD控制的直流功控的研究与设计。完成了SSPC外围硬件电路设计,包括主控芯片和A/D转换芯片 MOSFET主电路及缓冲保护电路的连接,模拟量采集电路,开关量采集电路,电源电路等;完成了CPLD上可编程逻辑部分的VHDL实现,包括A/D转换器的控制,电流的分段保护,SSPC动作命令判断逻辑的生成等。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭