新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > MSP430F在ETC中的应用

MSP430F在ETC中的应用

作者:时间:2011-07-12来源:网络收藏
车载电子标签(OBU)对MCU的挑战

本文引用地址:http://www.eepw.com.cn/article/150481.htm

  车载电子标签系统对MCU有两个挑战 。一是低功耗;二是高速数据通信能力。

  车载电子标签的电池要求有5年以上寿命或者能够支持1万次以上交易。整个系统的低功耗设计成为工程师们的首要任务。其次,RSU对OBU下行数据波特率达到了256Kbps,上行数据波特率512Kbps。由于车辆通行时间非常短,需要OBU对RSU的数据和命令快速响应。而数据包最长能够达到1Kbits,不允许OBU收下整个数据包之后再解码,这要求MCU有实时编解码的能力。

  一般情况下,对FM0的软解码需要得到数据的电平宽度,从而实现解码。通常有两种方式,一种是Timer捕获数据沿,然后软件在中断中判断数据沿之间的宽度。另外一种是定时采样数据口线的电平,通过计数方式得到电平宽度。下行数据速率达到256Kbps,对数据“0”来讲,数据跳变沿之间的宽度只有2uS。对数据“1”来讲,数据沿宽度只有4uS。以第一种方式为例,传统的软解码方式过程如下:

  

软解码方式过程

  图 3. Timer 捕获中断方式

  如图2所示,数据接收过程中,Timer会每2uS或者4uS捕获到一个数据沿,并把数据沿保存到对应寄存器。所以,Timer捕获寄存器里的数据会最快每2uS更新一次。这就需要CPU速度足够快,能够在至少2uS之内完成解码过程。否则,Timer捕获寄存器的数据就会被新的数据覆盖掉,造成解码错误。假设MCU完成1个bit解码的时间需要50个cycle,那么至少需要MCU主频达到25MIPS以上才能实现实时解码。通常,我们会选取主频超过40MIPs的MCU,而这些高速MCU功耗往往难以满足系统的要求。所以,很多生产商采用双MCU的方式,由一颗高速MCU实现FM0实时编解码,另外还有一颗低功耗MCU,通常是MSP430来管理整个系统的功耗。这增加了系统的成本和复杂度。5xxx的问世,能够同时满足ETC系统对MCU所有的挑战,解决了客户的困扰。

  用F5xxx 片上DMA和TimerA捕获功能实现FM0实时解码的方法

  5xxx卓越的低功耗特性能够满足ETC OBU的低功耗要求。作为MSP430最新产品序列,F5xxx首次采用0.18um工艺,1MIPs消耗的电流低到了惊人的160uA,片上PMM(电源管理模块)让用户能够根据MCU负荷灵活调节核电压,确保功耗最低。另外,具备多种低功耗状态。在典型的LPM3模式下,打开RTC,RAM数据保持的情况下功耗仅为2uA。

  除了卓越的低功耗特性外,5xx主频虽然最高只能达到25MIPS,但由于有灵活的多通道DMA,能够与Timer联动,实现数据的自动搬移而不干扰到CPU,这极大的增强了MCU的数据吞吐能力,使主频不再成为瓶颈,而完成对FM0近乎实时的解码。另外,硬件的CRC16模块让MCU只需要操作寄存器就可以完成数据校验。利用DMA和CRC16的实时解码过程如图4所示:

  

  图 4. DMA自动数据搬移的解码方式

  数据接收过程中,Timer每2uS或者4uS捕获到一个数据沿,这时会自动触发DMA,DMA自动将Timer寄存器的数据搬移到RAM区的指定数组当中。整个数据接收过程不需要CPU的参与。有了DMA的存在,CPU就不需要频繁的进出中断去取数据,也不用担心Timer捕获寄存器数据的丢失,只需专注于解码过程。

  

  图 5. FM0 DMA方式解码图示

  解码过程说明:

  1. 待机状态:TimerA配置成捕获模式,使能TimerA中断,等待数据到来

  2. 捕获到第一个数据沿:在TimerA中断中使能DMA,使能TimerB及TimerB中断

  3. 数据接收:DMA自动将后续的数据沿搬移到内存数组中;同时MCU解码

  4. 数据结束:TimerB判断数据接收结束

  5. 解码结束

  

  图 6. 程序流程图



关键词: 应用 ETC MSP430F

评论


相关推荐

技术专区

关闭