开关电源(dc-dc)与ldo电源的区别 文章
最新资讯
日前,德州仪器 (TI) 推出了业内首款20A和30A同步DC/DC降压转换器。此转换器可同步降低噪声和EMI/EMC的频率,以及一个用于自适应电压缩放 (AVS) 的电源管理总线 (PMBus) 接口。TI的 SWIFT™ 20A TPS544B25和30A TPS544C25转换器集成了MOSFET,并特别采用小型PowerStack™ 四方扁平无引线 (QFN) 封装,以便驱动空间受限和功率密集应用中的专用集成电路 (ASIC) ,这些应用包括有线和无线通信、企业级云计算
关键字:
德州仪器 DC/DC
1、开关电源电路的设计
系统中的开关电源电路为蓄电池的充电提供稳定的电压采用的是反激式的开关电源电路。反激式开关电源的电路比较简单,比正激式开关电源少用了一个大的储能滤波电感,以及一个续流二极管,因此,反激式开关电源的体积要比正激式开关电源的体积小,且成本也要低。此外,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多,因此,反激式开关电源要求调控占空比的误差信号幅度要比较低,误差信号放大器的增益和动态范围也要较小。基于这些优点,反激式开关电源在目前家电领域中被广泛的应用。
关键字:
单片机 开关电源
随着能源危机、资源枯竭以及大气污染等危害的加剧,我国已将新能源汽车确立为战略性新兴产业,车载充电器作为电动汽车的重要组成部分,其研究兼具理论研究价值和重要的工程应用价值。采用前级AC/DC和后级DC/DC相结合的车载充电器结构框图如图1所示。
当车载充电器接入电网时,会产生一定的谐波,污染电网,同时影响用电设备的工作稳定性。为了限制谐波量,国际电工委员会制定了用电设备谐波限制标准IEC61000-3-2,我国也发布了国标GB/T17625.为了符合上述标准,车载充电器必须进行功率因数校正(PFC
关键字:
Boost AC/DC
本文以某款新能源轿车为研究对象,对驱动电机系统进行研究开发,确定驱动控制原理图,通过分析其控制器组成及功能分析,确定控制器关键部件的选型。交流永磁电机电流最优控制方法,计算得到各个转速和转矩需求下的id和iq电流值,并作为指令值控制实际输出电流。
关键字:
永磁同步电机 DC/DC 控制策略 201508
在电子产品设计过程中,电源通常是必不可少的部分,很多设备(尤其是使用电池的设备)的电源都是以DC-DC为主的。这些电源一般有三种拓扑结构,即人们熟知的buck、boost和buck-boost(也叫inverting),分别用于降压、升压和反向。但是,也有一些时候,我们需要的输出电压和输入电压相近或就在输入电压范围内,这时候,单独使用上述这三种结构都无法满足要求。对此,有的人使用先降后升或先升后降的方法,但这会大大降低效率;还有一些公司开发出了自动切换升压降压模式的芯片,但这样成本很高。有没有一种既高
关键字:
DC-DC 稳压电源
开关电源本身种类繁多,设计方法也复杂多样,因此研究一种简洁的方法去快速设计出所需要的通用型高效率,低廉价格的开关电源是很有必要的。
开关直流稳压电源是基于方波电压的平均值与其占空比成正比以及电感、电容电路的积分特性而形成的。其基本工作原理是,先对输入交流电压整流,从而形成脉动直流电压,经过DC-DC变换电路变压,再通过斩波电路形成了不同脉冲宽度的高频交流电,然后对其整流滤波输出需要电压电流波形。如果输出电压波形偏离所需值,便有电流或电压采样电路进行取样反馈,经过与比较电路的电压值进行参数比较,把
关键字:
开关电源 TopswitchⅡ
电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。
1开关电源简述
开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。
开关电源的拓扑指开关电源电路的构成形式。一
关键字:
开关电源 PWM
导读:本文主要介绍的是高频开关电源的原理,感兴趣的盆友们快来学习一下吧~~~很涨姿势的哦~~~
1.高频开关电源原理--简介
高频开关电源,其英文名称为Switching Mode Power Supply,又称交换式电源、开关变换器以及开关型整流器SMR,它是一种高频化电能转换装置。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。它主要是通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。
2.高频开关电源原
关键字:
开关电源 MOSFET 高频开关电源原理
欧盟EUP环保指令你知道吗?你知道此指令对静态能耗有什么要求吗?我们产品上需要怎样应对呢?下面给你解决此问题的电源供电方案。
2009年1月6日,欧盟电子类产品待/关机模式之EuP能耗指令执行措施已正式生效,其生态化设计要求与去年7月经欧盟生态化设计管理委员会批准的工作草案相同。厂商需在2010年1月6日前达到第一阶段的要求,2013年1月6日达到第二阶段要求。
图1 Eup图标
我们来了解一下EuP能耗指令第二阶段的具体要求,
1、产品在关机或待机
关键字:
MOS AC-DC
电感,一直以来都有些许神秘:它可以产生磁场,把磁场和电场联系起来;电感的电流I不能突变,但电流变化率dI/dt可以突变;电感的储能与其流过的电流有关。
铁氧体和铁粉是用于开关电源电感的两种磁芯材料。应用于电源的储能电感通常制成闭环,使得整个磁场包含在电感的内部,因此磁通大小与磁芯的存储能量将表征磁芯材料的特性。
以Buck电路的输出电感为例。该电感的磁芯具有一定的直流分量,适用的材质有:
(1) 铁粉芯
碾磨的铁粉与其他的合金组成的精细颗粒与绝缘材料涂层构成磁粉芯。铁粉颗粒周围
关键字:
开关电源
序言
电源是电子系统的“心脏”,对整个电路起着至关重要的作用。但越来越严苛的应用环境,给电源设计工程师带来了巨大的挑战。
在实际应用中,存在着诸多特殊的应用条件,这就对电源模块提出了更多、更高的要求。客户在应用中往往面对如下几个挑战:
1)整机效率:随着全球能耗日益增加,节能环保意识已深入人心。工业设备厂商如何通过利用电源转换效率来提高整机效率?
2)空载应用:部分电子系统中的电源大部分时间处于空载工作状态。如何保证电源在空载运行状态下的高可靠、低能源损
关键字:
金升阳 DC-DC
随着我国电子工业的不断发展,电源模块市场需求量越来越大。电源模块相对于LDO,有效率高、功率密度高等优势。测试电源模块的输出噪声偏大,应该如何抑制噪声呢。
图1 低纹波噪声电源模块
一、电源模块噪声的产生
反激式开关电源拓扑结构,如图 1所示。由场效应管Q1导通,输入电流流过变压器和场效应管Q1,再场效应管Q1关断,使得输入电流通过电磁感应到变压器的输出端,实现能量的传递。由于变压器初级存在漏感,漏感和场效应管Q1的寄生电容产生振荡,振荡产生的减压尖峰,在
关键字:
开关电源 噪声
导读:本文主要讲述的是反激式开关电源的原理,感兴趣的盆友们快来学习一下吧~~~很涨姿势的哦~~~
1.反激式开关电源原理--简介
反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。与之相对的是“正激”式开关电源,当输入为高电平时输出线路中串联的电感为充电状态,相反当输入为高
关键字:
开关电源 反激式 反激式开关电源原理
SiC Mosfet具有耐高压、低功耗、高速开关的特质,极大地提升了太阳能逆变器的电源转换效率,拉长新能源汽车的可跑里程,应用在高频转换器上,为重型电机、工业设备带来高效率、大功率、高频率优势。。。。。。。据调查公司Yole developmet统计,SiC Mosfet现有市场容量为9000万美元,估计在2013-2020年SiC Mosfet市场将每年增长39%。由此可预见,SiC即将成为半导体行业的新宠!
SiC Mosfet对比Si IGBT主要有以下优势:
i. 低导通电阻RDS
关键字:
SiC Mosfet DC-DC
基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。该设计模式具有电路简单、性能稳定、转换效率高等优点。
在能源日益紧张的今天,光伏发电技术越来越受到重视。太阳能电池和风力发电机产生的直流电需要经过逆变器逆变并达到规定要求才能并网,因此逆变器的设计关乎到光伏系统是否合理、高效、经济的运行。
1光伏逆变器的原理结构
光伏并网逆变器的结构如图1所示,主要由前级DC/DC变换器和后级DC/
关键字:
逆变器 DC/DC
开关电源(dc-dc)与ldo电源的区别介绍
您好,目前还没有人创建词条开关电源(dc-dc)与ldo电源的区别!
欢迎您创建该词条,阐述对开关电源(dc-dc)与ldo电源的区别的理解,并与今后在此搜索开关电源(dc-dc)与ldo电源的区别的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473