

Multi-Core Technology Direction

YK Ho and Jeffrey Ho

Networking Leadership Since 1995

Integrated Networking

- QUICC Engine™
- GbE, PCI-Express, Serial RapidIO

Power Efficient, Real-time Embedded

- Low-power Cores and I/Os
- Protocol integration

Multi-layer Security

Authentication, IPSec, IPS/IDS

Scalable Service Processing

- Up to 1.5 GHz + Multi-Core
- Heterogeneous

Application Acceleration

- Deep-packet-inspection
- Pattern-matching
- Multi-Core aware

Content Processing

- HD Video Transcoding
- Highest Performing Multi-Core DSP

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007.

FTF News Highlights

System Level Challenges – Enabling Our Customers to Make Their Products More Compelling

- Open, standards-based
- Pervasive connectivity options
- Flexible and Extensible
- Delivery of intelligent services
- Application-aware security
- Improved ability to collaborate

Freescale's Strategic Objective:

Provide an innovative, flexible, and open networking platform solution to enable our customers to realize value, leadership, and loyalty for their products

Current Power Architecture Multicore Block Diagrams

Two powerful alternatives with state of the art processing performance. Highly integrated SoC with optimized coherent memory controllers Samples Available - Now

Hot "news" in the embedded world

Technology Trends

Multiple cores are tried and true, but Multi-core is new
The installed base of single core devices have designers looking for the right combination of technology
Built-in expectations of "Doubling" to keep up with the growth, may not be enough

Market Trends

- Every network connection matters
- Explosive rate of content growth
- New applications require efficient integration and security
- Evolving collaboration models create new user environments

► The installed base of communications processors are still largely single-core devices but systems designers desire to leverage dualcore and then multi-core architectures to solve their next-generation challenges.

We're at an Inflection Point

► However, first-generation multi-core platforms are seeing mixed reviews.

- "That's too high-powered for my application."
- "How do I port my legacy application?"
- "I can't tell what my performance will be."
- "How do I partition my application?"
- "Why don't I see n-times higher performance?"

Silicon Challenges:

- Application complexity and flexibility drive scalable, software-based solutions.
- Balanced architectures must deliver performance "greater than Moore's law" within system power budgets.
- Existing code must be leveraged to new architectures to preserve familiar service experiences.

What's the News?

It's a smarter approach to multi-core. Freescale's Multi-Core Platform

► Innovative Multi-Core Microarchitecture for unprecedented computing efficiency, performance and scalability.

- On-chip Fabric
- Back-side Cache per CPU Core
- On-Demand Application Acceleration

► Multi-Core Simulation Environment for accurate, fast code development and debugging.

- · Fully tap the capabilities of the multi-core platform
- Debug software not hardware
- Dynamic, real-time debug with non-intrusive capture

► **45-nm Process Technology** for industry-leading power-to-performance solution.

 Provides highest instructions-per-cycle (IPC) and frequency for given milliwatt/area

Purposeful Approach to Multicore

- Balance of system elements to find right combinations:
 - ✓ Cores
 - ✓ Memories
 - ✓ Peripherals
 - ✓ Software environment
 - ✓ Partners

Balance with Freescale Multicore experience

Power Architecture Multi-Core Solutions from Freescale

- ► MPC51xx Power Architecture[™] MobileGT family
 - e300 Power Architecture[™] core + graphics core + audio core

- ► MPC5510 Power Architecture[™] automotive microcontrollers
 - e200z1 + optional e200z0 Power Architecture cores
- PowerQUICC + QUICC Engine
 - Power Architecture[™] Core + 2 RISC cores for protocol interworking
- PowerQUICC + Content Processing
 - Dual e500 Power Architecture™ cores + acceleration IP
- MPC8641D Host Processor
 - Dual e600 Power Architecture[™] cores
- GPON processor
 - Power Architecture core + StarCore[®] DSP core

Freescale Power Architecture SoCs use a combination of standard CPU processing mixed with a variety of co-processing options tailored to specific market needs.

These heterogeneous processing solutions may integrate

- One or more Power Architecture cores (homogeneous and heterogeneous multi-core configurations)
- On-chip co-processors
- Flexible hardware acceleration

Freescale's new Multi-core Platform establishes a common architecture for communications processing solutions moving forward.

- NEW Multi-core Communications Platform
 - 2 to >32 Power Architecture cores (can mix and match) + on-demand acceleration

The New Multi-Core Platform Details

The New Multi-Core Platform

Introducing CoreNet Fabric for concurrent, non-blocking, hardwarebased cache-coherent platform connectivity

- Eliminates shared bus contention and supports dramatically higher address issue bandwidth to "feed" multiple CPU cores
- Scales to support more than 32 cores
- Supports heterogeneous cores
- Supporting an Innovative Tri-level
 Cache Hierarchy
 - Heterogeneous Power Architecture[™] cores with L1 I + D and unified back-side L2 caches
 - Supports multiple L3 shared caches
 - Supports multiple memory controllers

Including On-demand Application Acceleration

Expected to enable 2-3 times improved system performance

Cache and Memory Subsystem

- Performance engineered Tri-Level cache hierarchy
 - Heterogeneous Power Architecture[™] cores separate L1 Instruction and Data caches
- Unified back-side L2 cache per core
 - Optimal sizing for application performance
 - Minimizes access latency
- Supports multiple L3 shared caches
 - Flexible cache partitioning on per core basis
 - Cache header stash
- Multiple Memory Controllers
 - Support for DDR2 and DDR3 SDRAM

Platform options for multicore

Integrated I/O Interface Technology

- DUART, I2C, SPI, LPC
- ► 10/100/1000 Ethernet
 - SGMII, IEEE 1588, FIFO
- 10G Ethernet
 - XAUI
- ► PCI/PCI-X
- ►sRIO
- ► PCI-Express
- ►Local Bus
 - NOR/NAND Flash
- ►USB 2.0
- ► SATA

On Demand Acceleration

Packet Processing

- SEC Security
 - Look-aside protocol aware cryptoacceleration
- Pattern Matching Engine
 - Look-aside regex pattern matching
- Table Look-up Unit
 - Look aside offload for packet classification

Data Path Resource Management

- Data Buffer and Queue Management
- Intra-core Message Passing

Software Considerations for Multicore

Software development Challenges

Application complexity and flexibility drives scalable, software-based solutions

► Partitioning and code parallelism

Balanced architectures must deliver performance "greater than Moore's law" within system power budgets.

SMP vs. AMP which is right for the application

- Maturity of development tools
- Debug capability and tools

Multi-Core System Usage Models

Flexible choice of OS model on cores—any combination of SMP/AMP.

IP Services Router example (mixed control and data plane mapping):

Multi-Core Development Environment

Virtualization enables partitioning of resources among System Classes

Core, Memory, I/O, Accelerators

Supports flexible mix of SMP/AMP (control plane, data plane) as well as 3rd party services

 On-chip fabric enables scalable cachecoherent memory access with isolation and protection

Multi-Core Diagnostics supporting trace, event, and application performance analysis

Hybrid simulation environment enables migration and partitioning of OSs and applications onto a full multicore system

 Enables fast, accurate performance prediction and software optimization

Virtual Environment Simulating Hardware and Software

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007.

45-nm Process: Technology is a key enabling force

Process Technology Development

- Collaboration with IBM Alliance for 45-nm, 32-nm, Bulk-CMOS, and SOI
- 45-nm manufacturing agreement with Chartered Semiconductor
- Advanced R&D for 22-nm and beyond with IBM Alliance

45-nm Integration Enabler

More functionality within the same die area to enable improved system performance

45-nm Energy Advantages

Same functionality delivered today in 90nm will achieve 50% die size reduction and 50% lower power in 45-nm

45-nm Performance Leap

Multi-Core Platform in 45-nm Process Technology delivers over 4x improvement in System Performance

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007.

Freescale's New Multi-Core Communications Platforms

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007.

Freescale Multi-Core Platform Will Deliver Scalable, Software-Based Solutions that Preserve and Extend the User Experience Through New Services

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007.

Making Better Networks

Multicore Technology Direction Summary

► An SoC platform influenced by multiple generations of embedded networking leadership.

► The Freescale Multi-core Platform unleashes the system performance potential of multi-core microarchitectures.

- Fabric vs. shared bus
- Three-level cache hierarchy with private L2 cache per CPU core
- On-demand application acceleration off-load
- Scalable beyond 32 Power Architecture cores supports heterogeneous cores
- 45-nm process technology enables delivery within power budgets

Advanced simulation tools take multi-core programming to a new level (start today!).

- MPC8572 and its simulation model available today. This platform closely mirrors the first Multi-core Platform implementations.
- Hybrid simulation environment supporting the new Multi-core Platform architecture

Comprehensive roadmap of products to be based on the Multi-core Platform, the first of which to hit the market in late 2008.

