
© 2007 Wind River
1

 
Wind River Device Management

© 2007 Wind River
2

Quality, TTM and Uptime Challenges

Implementation
Software

Integration
Testing

Verification
Testing

Validation
Testing Field Trial Support Maintenance

Development Deployment SW Quality Assurance

© 2007 Wind River
3

Wind River Device Management

Field Diagnostics Lab Diagnostics

Streamlines development
and QA processes to
deliver higher quality

devices to market faster

Development
Quality

Assurance

Streamlines the support
process to increase device

uptime and to increase
device-user satisfaction

Support
Customers

© 2007 Wind River
4

Wind River Lab Diagnostics

Software QA Best Practices
for Device Software

© 2007 Wind River
5

Engineering Challenges

Development SQA

• SQA engineering must
reduce MTTR

• Must increase code
coverage, SW
performance and SW
stress test capabilities

• Must test more software

• Has fixed resources

Software QA Challenges

• Development engineering
must write more software

• Must increase
performance

• Must increase system
quality

• Must deploy products
faster

• Has fixed resources

Engineering Challenges

© 2007 Wind River
6

Quality and TTM Challenges

Implementation
Software

Integration
Testing

Software
Verification

Testing

Product
Validation

Testing

Development Software Quality Assurance

Quality Assurance Phase: Testing and problem resolution consume
40-50% of a typical development schedule

Software Integration: Prolonged software integration delays the
schedule

Software Verification Testing: Incomplete white-box testing causes
downtime in deployed products

Product Validation Testing: Software bugs encountered late in the
project delay product release

© 2007 Wind River
7

Wind River Lab Diagnostics
A scalable, distributed software diagnostics system that enables

development and test engineers to perform real-time tests and resolve
bugs during software integration, software verification and product

validation

System under Test

Network

LAN

Development
SQA

Workbench
Diagnostics

Device
Management

Server

© 2007 Wind River
8

Streamlines Development and QA processes

•  Enables testable device software
•  Enables real-time testing of running software on live

systems
–  Software API verification
–  Performance testing
–  Execution path coverage
–  Fault injection to characterize the response of running

applications
•  Facilitates collaboration between development and test

engineers
•  Shortens time to fix bugs

© 2007 Wind River
9

Sensorpoint Technology

•  Dynamic instrumentation of
functions or methods of running
applications

– No application modification,
recompile, reloading or rebooting
needed

– Minimally intrusive

– Run-time agent has a small
footprint

•  Enables comprehensive white-box
testing of running software

sensorpoint thread
{
 sensorpoint “foo.c”:”foo1()”
 {
 on_entry()
 {
 log($arg1);
 }
 }func_foo1;
}

© 2007 Wind River
10

Function-level Instrumentation
using Sensorpoints

•  Dynamically patch a
function or method:
–  on_entry
–  on_line
–  on_offset
–  on_exit

•  Access variables within the
scope of functions
–  Log and change variable

value

foo (arg1)

{

 int error;

 if (arg1 < 500)

 {

 error = 0;

 }

 else error = 1;

 return (error)

}

log($arg1);

$arg1 = 501;

log($error);

© 2007 Wind River
11

Patchpoint Technology

•  Dynamic replacement of functions
or methods in running applications

– Guarantees image integrity

– Apply corrective code without
application re-start or device re-
boot

– Minimally intrusive

•  Complementary to firmware updates
and dynamically downloadable
binaries

Application

Operating
System

Patchpoint

Patchpoint

Patchpoint

Patchpoint

Patchpoint

© 2007 Wind River
12

Function Replacement with Patchpoint

foo:

Patchpoint
Replaced Function Binary

© 2007 Wind River
13

Workbench Diagnostics

•  Workbench IDE plug-ins

•  Development engineers can:
–  Design-in testability

–  Create software test
harnesses with Sensorpoints

–  Analyze test and fault data

–  Resolve bugs with
Patchpoints

Source Editor for
Patchpoint and Sensorpoint

Patchpoint and Sensorpoint
Compiler

Device Connect Plug-in

Server Connect Plug-in

Sensorpoint Log Viewer

System Viewer of Sensorpoints

Project Facility & Kernel Configuration

© 2007 Wind River
14

Device Management Server

•  J2EE server application for real-
time software testing

–  Browser-based, multi-user
console

•  Engineers can:
–  Manage multiple devices under

tests

–  Deploy Sensorpoints to execute
white-box tests

–  Collect test and fault data

–  Analyze test and fault data

–  Deploy Patchpoint to resolve bugs

User Administration

Multiple Device Administration

Database

Log Management

System Viewer of Sensorpoints

Browser-based Console

Sensorpoint and Patchpoint Management

© 2007 Wind River
15

Use Cases

© 2007 Wind River
16

Use Case: Interface Verification

•  Trace APIs on running
applications with Sensorpoints

•  Collect API arguments and

return values per iteration

•  Resolve interface issues

void foo() {

.

.

return = fooAPI(var1, var2);

.

.

}

void fooAPI(int arg1, int arg2) {

.

.

.

return(x);

}

sensorpoint thread
.
.
{
 log($arg1);
 log($arg2);
}

sensorpoint thread
.
.
{
 log($x);
}

© 2007 Wind River
17

Use Case: Performance Test

•  Real-time performance
testing on “live” systems
with Sensorpoints

•  Measure execution time at
–  Function level
–  Sub-system level

•  Isolate performance
bottlenecks

•  Tune software for
performance

isrDispatcher(void)

{

 .

 .

 .

 .

}

© 2007 Wind River
18

Use Case: Fault Injection & Execution Path Coverage

•  Inject faults and control
execution of code with
Sensorpoints

•  Test more running code
–  Execute uncommon

execution paths or branches
–  Test error handlers
–  Test robustness and stability

of products

•  Increase product quality by
–  Fully characterizing fault

response of applications
–  Increasing test coverage of

executing binaries

foo()
{
 .
 .
 return = messageSend(*message);
 switch(return)
 {
 case RESEND: messageResend(*message);
 case ERROR1: alarm(ERROR1);
 case ERROR2: alert(ERROR2);
 case ERROR3: linkReconnect();
 default: alarm();
 }
 .
 .
}

messageSend()
{
 .
 .
 .
 return(rValue);
}

sensorpoint thread
.
.
{
 int i=0;

 switch(i)
 {
 case 1: $rValue=ERROR1;
 case 2: $rValue=ERROR2;
 case 3: $rValue=ERROR3;
 case 4: $rValue=UNEXPECT;
 default: alarm();
 }
}

© 2007 Wind River
19

Results with Lab Diagnostics

•  Faster to Market
–  Software Integration: shorten time to stable, integrated software
–  Software Verification: shorten time to test coverage
–  Product Validation: shorten time to problem resolution

•  Higher Quality
–  Functional: trace execution of device software
–  Reliable: fault inject and execution path coverage
–  High Performance: comprehensive timing information

© 2007 Wind River
20

Device Management Breakout

•  13:00 - 13:50: Workbench Diagnostics

•  15:45 – 16:35: Mapping Wind River Field Diagnostics to
your customer Support Process

