Wind River Device Management

e WIND RIVER
© 2007 Wind River



Quality, TTM and Uptime Challenges

Development SW Quality Assurance Deployment

ST Verification | Validation
Implementation Integration . . Field Trial Support Maintenance
Testing Testing Testing

WIND RIVER

© 2007 Wind River



Wind River Device Management

Lab Diagnostics Field Diagnostics

Development

Quality Customers _““ll “““l

Assurance Support S
{ AR TORTRRN

Streamlines development Streamlines the support
and QA processes to process to increase device
deliver higher quality uptime and to increase

devices to market faster device-user satisfaction

3 o WIND RIVER
© 2007 Wind River



Wind River Lab Diagnostics

Software QA Best Practices
for Device Software

, WIND RIVER
© 2007 Wind River



Engineering Challenges

Engineering Challenges

Development

« Development engineering
must write more software

Must increase
performance

Must increase system
quality

Must deploy products
faster

Has fixed resources

@

Software QA Challenges

SQA engineering must
reduce MTTR

Must increase code
coverage, SW
performance and SW
stress test capabilities

Must test more software

Has fixed resources

© 2007 Wind River

T
vwinND RIVER



Quality and TTM Challenges

Development Software Quality Assurance
Software Software Product
Implementation Integration Verification Validation

Testing Testing Testing

Quality Assurance Phase: Testing and problem resolution consume
40-50% of a typical development schedule

Software Integration: Prolonged software integration delays the
schedule

Software Verification Testing: Incomplete white-box testing causes
downtime in deployed products

Product Validation Testing: Software bugs encountered late in the
project delay product release

o WIND RIVER
© 2007 Wind River



Wind River Lab Diagnostics

A scalable, distributed software diagnostics system that enables
development and test engineers to perform real-time tests and resolve
bugs during software integration, software verification and product
validation

Workbench Device

Diagnostics Management
Server

D .. Network ‘
- A

D | t
evelopmen SQA

LAN

OIIIIIII IIIIIIIO
0IIIIIII IIIIIIIO

System under Test

WIND RIVER

© 2007 Wind River



Streamlines Development and QA processes

Enables testable device software

Enables real-time testing of running software on live
systems

— Software API verification

— Performance testing

— Execution path coverage

— Fault injection to characterize the response of running
applications

Facilitates collaboration between development and test
engineers

Shortens time to fix bugs

o WIND RIVER
© 2007 Wind River



Sensorpoint Technology

* Dynamic instrumentation of
functions or methods of running
applications

— No application modification,
recompile, reloading or rebooting
needed

— Minimally intrusive

— Run-time agent has a small
footprint

 Enables comprehensive white-box
testing of running software

© 2007 Wind River

-

Vs

sensorpoint thread

{

sensorpoint “foo.c”:"foo1()”

{
on_entry()

{
log($arg1);

Hunc_foo1;

}

Sensor Point 1

Application Sensor Point 2

Sensor Point 3

Sensor Point 4

Operating
System Sensor Point 5

WIND RIVER




Function-level Instrumentation
using Sensorpoints

 Dynamically patch a
function or method:

— on_entry
— on_line
— on_offset
— on_exit

« Access variables within the
scope of functions

— Log and change variable
value

10

/

{

}
-

foo (‘arg1) <——. log($arg1); ]

int error;

$arg1 = 501; J
if (arg1 < 500)

{

error = 0;

}

else error = 1;

return (erro*—-‘ log($error); J

J

© 2007 Wind River

WIND RIVER



11

Patchpoint Technology

Dynamic replacement of functions
or methods in running applications

— Guarantees image integrity

— Apply corrective code without
gpplication re-start or device re-
oot

— Minimally intrusive

Complementary to firmware updates
and dynamically downloadable
binaries

© 2007 Wind River

Application

Operating
System

Patchpoint

Patchpoint

Patchpoint

Patchpoint

Patchpoint

WIND RIVER



12

Function Replacement with Patchpoint

-

~

Replaced Function Binary

© 2007 Wind River

Patchpoint

WIND RIVER



13

Workbench Diagnostics

-

Project Facility & Kernel Configuration

Source Editor for

Patchpoint and Sensorpoint

Patchpoint and Sensorpoint
Compiler

Sensorpoint Log Viewer

System Viewer of Sensorpoints

Device Connect Plug-in

Server Connect Plug-in

~

J

© 2007 Wind River

Workbench IDE plug-ins

Development engineers can:
— Design-in testability

— Create software test
harnesses with Sensorpoints

— Analyze test and fault data

— Resolve bugs with
Patchpoints

WIND RIVER



14

Device Management Server

Browser-based Console

User Administration

Multiple Device Administration

Sensorpoint and Patchpoint Management

Log Management

System Viewer of Sensorpoints

Database

\_ J

© 2007 Wind River

J2EE server application for real-
time software testing

Browser-based, multi-user
console

Engineers can:

Manage multiple devices under
tests

Deploy Sensorpoints to execute
white-box tests

Collect test and fault data
Analyze test and fault data

Deploy Patchpoint to resolve bugs

WIND RIVER



15

Use Cases

© 2007 Wind River

WIND RIVER



Use Case: Interface Verification

void foo() {

return = fooAPI(var1, var2);

void fooAPI(int arg1, int arg2) {

return(x);

}

\_

16

sensorpoint thread

log($arg1);

log($arg2); )

}

sensorpoint thread

{
log($x);

© 2007 Wind River

Trace APIs on running
applications with Sensorpoints

Collect APl arguments and
return values per iteration

Resolve interface issues

WIND RIVER



Use Case: Performance Test

/ isrDispatcher(void)

{

\

L}

<

/

At

m”or... Tasks Probl...  Prope... Build... Termi... |Console Devic... Serve... =08

E oA I % R8T

Tag Value Time {(secs) Time Delta Tas... TaskID N

default  entering istDispatcher  461363.191016606 0 ]

default  exiting istDispatcher 461363.191016606  0E-9

default  entering istDispatcher  461363.274339515  0.083322909

default  exiting isrDispatcher 461363.274339515  0E-9

default  entering istDispatcher  461363.357667636  0.083328121

default  exiting istDispatcher 461363,357667636  OE-9

default  entering istDispatcher  461363.438074787  0.080407151

default  exiting istDispatcher 461363.438074787  0E-9

default  entering istDispatcher ~ 461363.521398969  0.083324182

default  exiting istDispatcher 461363,521398969  0E-9

default  entering istDispatcher  461363.604732545  0.083333576

default  exiting istDispatcher 461363.604732545  0E-9

default  entering istDispatcher ~ 461363.688071757  0.083339212

default  exiting istDispatcher 461363.688071757  OE-9

default  entering istDispatcher  461363.771399272  0.083327515

default  exiting istDispatcher 461363.771399272  0E-9

default  entering istDispatcher  461363.854732727  0.08333345S

default  exiting istDispatcher 461363.854732727  0E-9

default  entering istDispatcher  461363.938066181  0.083333454

default  exiting istDispatcher 461363.9380661581  OE-9

default  entering istDispatcher  461364.021399454  0.083333273

default  exiting istDispatcher 461364,021399454  QE-9 v
17

© 2007 Wind River

Real-time performance

testing on “live” systems
with Sensorpoints

Measure execution time at

— Function level
— Sub-system level

Isolate performance
bottlenecks

Tune software for
performance

WIND RIVER



Use Case: Fault Injection & Execution Path Coverage

4 N

foo() °

{

return = messageSend(*message);
switch(return)

case RESEND: messageResend(*message);
case ERROR1: alarm(ERROR1); °
case ERRORZ2: alert(ERRORZ2);
case ERRORS3: linkReconnect();
default: alarm();

}

U Y,

(" sensorpoint thread
messageSend()

int i=0;

switch(i)

return(rValue); case 1: $rValue=ERROR1;
} case 2: $rValue=ERROR2;
\ case 3: $rValue=ERRORS3;
case 4: $rValue=UNEXPECT;
default: alarm();

}
}

18
© 2007 Wind River

Inject faults and control
execution of code with
Sensorpoints

Test more running code

— Execute uncommon
execution paths or branches

— Test error handlers

— Test robustness and stability
of products

Increase product quality by

— Fully characterizing fault
response of applications

— Increasing test coverage of
executing binaries

WIND RIVER



Results with Lab Diagnostics

 Faster to Market
— Software Integration: shorten time to stable, integrated software

— Software Verification: shorten time to test coverage
— Product Validation: shorten time to problem resolution

« Higher Quality
— Functional: trace execution of device software
— Reliable: fault inject and execution path coverage
— High Performance: comprehensive timing information

19 o WIND RIVER
© 2007 Wind River



Device Management Breakout

* 13:00 - 13:50: Workbench Diagnostics

* 15:45 - 16:35: Mapping Wind River Field Diagnostics to
your customer Support Process

20 o WIND RIVER
© 2007 Wind River



WIND RIVER



