首页  资讯  商机   下载  拆解   高校  招聘   杂志  会展  EETV  百科   问答  电路图  工程师手册   Datasheet  100例   活动中心  E周刊阅读   样片申请
EEPW首页 >> 主题列表 >> mini-mos

mini-mos 文章 进入mini-mos技术社区

DC-DC电路当中同步与非同步的差异讲解

  • 在开关电源电路设计当中,电流的转换分为很多种。其中直流转换是较常见的一种设计。通常称为DC-DC转换,是指将一个电压值转化为另一个电压值电能的装置。直流转换设计在开关电源当中非常常见,也是新手接触比较多一种电路设计,本篇文章将为大家介绍这种电路当中非同步与同步的区别。
  • 关键字: DC-DC  MOS  同步  开关电源  非同步  

为IC设计减少天线效应

  • 如同摩尔定律所述,数十年来,芯片的密度和速度正呈指数级成长。众所周知,这种高速成长的趋势总有一天会结束,只是不知道当这一刻来临时,芯片的密度和性能到底能达到何种程度。随着技术的发展,芯片密度不断增加,而闸级氧化层宽度不断减少,超大规模集成电路(VLSI)中常见的多种效应变得原来越重要且难以控制,天线效应便是其中之一。
  • 关键字: IC设计  天线  天线效应  充电损害  MOS  

高手详解,MOS及MOS驱动电路基础总结

  •   在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS管的导通电阻、最大电压、最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。   下面是我对MOS及MOS驱动电路基础的一点总结,其中参考了一些资料。包括MOS管的介绍、特性、驱动以及应用电路。   MOSFET管FET的一种(另一种是JEFT),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,
  • 关键字: MOS  MOS驱动电路  

恩智浦将分立器件与功率MOS业务出售给中国公司

  •   半导体行业的重组还在继续。恩智浦半导体(NXP Semiconductors)将把经营分立器件、逻辑芯片、功率MOS半导体等产品的标准产品业务部门出售给中国的投资公司(英文发布资料)。   标准产品业务部门2015年财年的销售额为12亿美元,约占恩智浦总销售额(61亿美元)的2成。该部门约有员工1.1万名,约为恩智浦总员工数量(4.5万)的2.5成。   出售金额约为27.5亿美元,购买方是北京建广资产管理有限公司(简称“建广资产”)与Wise Road Capital两家
  • 关键字: 恩智浦  MOS  

【E问E答】MOS管为什么会被静电击穿?

  •   MOS管一个ESD敏感器件,它本身的输入电阻很高,而栅-源极间电容又非常小,所以极易受外界电磁场或静电的感应而带电(少量电荷就可能在极间电容上形成相当高的电压(想想U=Q/C)将管子损坏),又因在静电较强的场合难于泄放电荷,容易引起静电击穿。静电击穿有两种方式:一是电压型,即栅极的薄氧化层发生击穿,形成针孔,使栅极和源极间短路,或者使栅极和漏极间短路;二是功率型,即金属化薄膜铝条被熔断,造成栅极开路或者是源极开路。JFET管和MOS管一样,有很高的输入电阻,只是MOS管的输入电阻更高。  静电放电形成
  • 关键字: MOS  击穿  

一种简单的防短路的保护方法

  •   前段时间开发了一个产品,由单片机控制对负载供电,满负载时基准电流为800毫安,程序提供不同的供电模式,具体是由单片机输出一个PWM信号控制MOS管,从而按要求调整工作电流。我们知道MOS管导通时内阻非常小,我们所用的型号约为0.1欧姆的样子,这样正常工作时上面最大压降非常小,只有800毫安*0.1欧姆=0.08伏,上面的功率损耗为0.064瓦,对于电源控制来说是一种效果不错的器件。  虽然MOS管导通内阻非常小,但所流过的电流也有最大限制,如果电流过大,比如外接负载短路,同样会被烧毁。短路都是非正常工
  • 关键字: 防短路  MOS  

场效应晶体管的几点使用知识

  •   我们常接触到晶体三级管,对它的使用也比较熟悉,相对来说对晶体场效应管就陌生一点,但是,由于场效应管有其独特的优点,例输入阻抗高,噪声低,热稳定性好等,在我们的使用中也是屡见不鲜。我们知道场效应晶体管的种类很多,根据结构不同分为结型场效应管和绝缘栅型场效应管;绝缘栅型场效应管又称为金属氧化物导体场效应管,或简称MOS场效应管.  1、如何防止绝缘栅型场效应管击穿  由于绝缘栅场效应管的输入阻抗非常高,这本来是它的优点,但在使用上却带来新的问题.由于输入阻抗高,当带电荷物体一旦靠近栅极时,在栅极感应出来的
  • 关键字: 场效应晶体管  MOS  

深度分析MOS场效应管在消费类电子中的电路设计

  •   当我们还是学生的时候,不论从做题还是原理分析上,通常会重点学习NPN和PNP三极管的特性:静态工作特性计算、动态信号分析等等。对于MOS管,老师一般都会草草带过,没有那么深入的分析和了解,一般都会说MOS管和三极管的不同就是一个是电压控制,一个是电流控制,一个Ri大,一个Ri小等等。除了这些明显的特性,下文就从工作实战的角度进行MOS场效应管的分析。  首先我们来看下经常使用的增强型mos场效应管:N沟道和P沟道mos场效应管。  在消费类电子设计中由于对功耗要求比较严格,通常使用N沟道和P沟道MOS
  • 关键字: MOS  场效应管  

怎样正确使用MOS 集成电路

  •   所有MOS集成电路(包括P沟道MOS,N沟道MOS,互补MOS—CMOS集成电路)都有一层绝缘栅,以防止电压击穿。一般器件的绝缘栅氧化层的厚度大约是25nm50nm80nm三种。在集成电路高阻抗栅前面还有电阻——二极管网络进行保护,虽然如此,器件内的保护网络还不足以免除对器件的静电损害(ESD),实验指出,在高电压放电时器件会失效,器件也可能为多次较低电压放电的累积而失效。按损伤的严重程度静电损害有多种形式,最严重的也是最容易发生的是输入端或输出端的完全破坏以至于与
  • 关键字: MOS  集成电路  

到底什么是fmax讲解

  •   简介: 今天一个刚刚入行的朋友找到我说,他的老板给了他一个MOS管让他测管子的fmax,帮他测完之后,他还问到怎么才能加大这个fmax~~想到自己也曾千辛万苦的琢磨这个参数,就写个短短的文章说一下fmax到底是什么和哪些参数有关。   这两个频率都是晶体管的重要参数,无论BJT还是MOS,也决定了将来电路能工作到的最大频率(当然这个最大频率是绝对不可能到fmax和ft的)。这两个频率其实离得不远,那他们有什么差别呢:ft是用电流增益来定义的,fmax是用最大功率增益来定义的,千万别弄混了哦。下图是一
  • 关键字: MOS  fmax  

iPad Mini 4拆解:确认2GB内存+更小容量电池

  •   国外知名维修网站iFixit今天对iPad Mini 4进行了拆解,确认该平板比前代装备了更小的电池容量。正如此前科技评测网站Ars Technica对其进行的GeekBench 3测试结果,通过物理拆解确认iPad Mini 4装备2GB的内存和时钟频率为1.5GHz的 A8处理器,这意味着该平板要比iPhone 6s/6s Plus(1.4GHz的A8处理器)性能更卓越,要比前代iPad mini 2/3所搭载的1.3GHz A7处理器有着明显的性能提升。        iFi
  • 关键字: iPad  Mini 4  

一种简单的防短路保护方法

  •   简介:注释:静电损坏器件是击穿,和烧毁是两个概念,不要混淆在一起。   前段时间开发了一个产品,由单片机控制对负载供电,满负载时基准电流为800毫安,程序提供不同的供电模式,具体是由单片机输出一个PWM信号控制MOS管,从而按要求调整工作电流。我们知道MOS管导通时内阻非常小,我们所用的型号约为0.1欧姆的样子,这样正常工作时上面最大压降非常小,只有800毫安*0.1欧姆=0.08伏,上面的功率损耗为0.064瓦,对于电源控制来说是一种效果不错的器件。   虽然MOS管导通内阻非常小,但所流过的电
  • 关键字: 静电损坏  MOS  

低待机功耗电源方案选择

  •   欧盟EUP环保指令你知道吗?你知道此指令对静态能耗有什么要求吗?我们产品上需要怎样应对呢?下面给你解决此问题的电源供电方案。   2009年1月6日,欧盟电子类产品待/关机模式之EuP能耗指令执行措施已正式生效,其生态化设计要求与去年7月经欧盟生态化设计管理委员会批准的工作草案相同。厂商需在2010年1月6日前达到第一阶段的要求,2013年1月6日达到第二阶段要求。        图1 Eup图标   我们来了解一下EuP能耗指令第二阶段的具体要求,   1、产品在关机或待机
  • 关键字: MOS  AC-DC  

全球最小Mini PC探究,详尽拆解“光棍一号T02”

  •   去年光棍节,全球最小的Mini PC“光棍一号”横空而出,绝佳的创意、强悍的性能再加上迷你的尺寸,让这款产品在登录京东众筹之后获得了巨大成功。早几天,该产品团队带来了光棍一号第二代“光棍一号T02”再度来袭,据设计方MeegoPad团队透露,该产品从性能、散热、接口方面都做了巨大升级。我们拿到了一个样机,重度拆解,透视其真相。   在拆解之前,我们先了解一下T02的具体参数:        下面是我们收到的产品包装盒外观:   
  • 关键字: Mini PC    

怎样用最小的代价降低MOS的失效率?

  •   【前言】在高端MOS的栅极驱动电路中,自举电路因技术简单、成本低廉得到了广泛的应用。然而在实际应用中,MOS常莫名其妙的失效,有时还伴随着驱动IC的损坏。如何破?一个合适的电阻就可搞定问题。   【问题分析】        上图为典型的半桥自举驱动电路,由于寄生电感的存在,在高端MOS关闭后,低端MOS的体二极管钳位之前,寄生电感通过低端二极管进行续流,导致VS端产生负压,且负压的大小与寄生电感与成正比关系。该负压会把驱动的电位拉到负电位,导致驱动电路异常,还可能让自举电容过充电
  • 关键字: MOS  SCR  
共299条 9/20 |‹ « 7 8 9 10 11 12 13 14 15 16 » ›|
关于我们 - 广告服务 - 企业会员服务 - 网站地图 - 联系我们 - 征稿 - 友情链接 - 手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
备案 京ICP备12027778号-2 北京市公安局备案:1101082052    京公网安备11010802012473