新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > MXT5611:高精度可配置定时电路(下)

MXT5611:高精度可配置定时电路(下)

作者:刘风华 设计工程师 北京时代民芯科技有限公司时间:2009-08-10来源:电子产品世界收藏

  本电路的时基校准方法是通过外部端口输入标准512ms时间长度,以振荡器输出频率对512ms时间进行采样计数,得出一个计数值。然后把该计数值除以512,得到商值和余数。商值做为1ms时钟的基本长度,然后通过判断再次基本长度上增加或者不增加1个计数脉冲来得到最终的1ms时钟信号,这样每一个1ms输出时钟最大误差为1T(硅振荡器输出时钟周期),而512ms时间最大误差也为1T。上述判断过程以512位周期,即每一个512ms对商和余数做同样的处理。

本文引用地址:http://www.eepw.com.cn/article/97041.htm

  那么,在不考虑温度等条件的情况下,以该方案得到的时钟进行Nms(N=512X+Y,X=0,1,2,3,……;0≤Y≤511)时间长度定时,最大误差为(X+Y/4)·T。我们通过分析,可以得出以下几句数据:

  438s时间长度定时误差为103T(T为内建振荡器输出时钟周期,当设计值为1us时,此时的定时精度约为2ppm)。

  82m时间长度定时误差为104T(T为内建振荡器输出时钟周期,当设计值为1us时,此时的定时精度约为2ppm)。

  142h时间长度定时误差为106T(T为内建振荡器输出时钟周期,当设计值为1us时,此时的定时精度约为2ppm)。

  在不考虑硅振荡器的温度特性条件下,利用本方法产生时钟进行的定时精度为2ppm,可以等同于压控制式晶体振荡器频率精度的10-6~10-5量级。

  本电路给出的定时校正方法主要是用以解决定时过程中因外部环境所引起的定时偏差,或者解决因控制需要而改变定时时间长度的问题。电路在定时过程中,接受外部信号,对定时过程进行实时校正。

  图4为的结构示意图,以减计数器为核心,同时接受定时数据和修正数据。定时数据做为减计数器的定时起点,而修正数据主要是用来对进入的定时时钟进行调整。的修正功能模块可以保证,在任何一时刻,处理一帧数据,缓存一帧数据,让进入修正模块处理的数据完成后,缓存器中的数据立刻进入修正模块,而修正总线上的数据进入缓存器。

  修正方法是根据外部修正数据的符号位进行增减判断,如果是增长定时过程N个时钟周期,则,在对定时时钟进行N个时钟周期的上升沿磨平处理;如果是缩短N个时钟周期,则在N个时钟周期内,定时器进入双沿触发定时过程。

  图5为定时修正波形图,从ADJUST端口输入具体修正时间,图中第一帧为定时增长7个时钟周期,第二帧为定时缩短7个时钟周期。CLKIN为定时时钟,CLKOUT为修正后时钟。T0counter[15:0]为定时器的数据。

  功耗考虑

  根据电路的工作状态,可以把电路分为配置工作状态和定时状态。任意工作状态下,并非所有的模块都处于工作状态下。在设计模块间接口信号时,同时设计模块电源控制信号。在进行配置工作状态下,通信模块和储存单元处于工作状态,而整个定时处理工作模块处于等待状态。在这段时间,定时处理工作模块一直处于清零状态,而且对定时器时钟信号进行锁定不工作。当处于定时状态下,大部分的通信模块及存储单元不会发生数据变化,此时可以关断EEPROM的参考电流源来降低电路功耗。

  结论

  通过本文的配置方案和精度方案,可以保证电路定时精度在2ppm左右。采用菊花链式配置定时器结构,可以通过简单的配置得到多种定时应用,满足多种控制要求。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭