新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 针对电信和网络应用的安森美半导体DC-DC电源参考设计示例

针对电信和网络应用的安森美半导体DC-DC电源参考设计示例

作者:安森美半导体时间:2009-03-09来源:电子产品世界收藏

2) 隔离电源转换:基于NCP1031的2 W偏置电源参考设计
  针对基站和网络中的偏置电源应用,我们假定其目标规范为:输入电压+48 V、输出电压12 V、输出功率2 W,目标能效高于80%,有隔离要求。这些目标规范要求应用具有小尺寸和高功率密度,支持元件数量尽可能地少,并且具有宽输入范围,覆盖+48 V电信应用。

本文引用地址:http://www.eepw.com.cn/article/92224.htm

  针对这方面的应用要求,我们可以采用半导体的NCP1030。实际上,NCP1030及NCP1031是半导体推出的一系列小型高压单片开关稳压器,具有片上开关及启动电路,能够配置为正激或反激等单端拓扑结构;其中,NCP1030适合于需要高至3 W功率的应用,而NCP1031适合于需要高至6 W功率的应用,本参考设计中我们选择的是NCP1030。

  NCP1030具有内部启动稳压器,直接采用输入电压进行供电,还集成门驱动和200 V,降低了电磁干扰(EMI)。其中的电路采用SENSEFET?技术来监控漏电流(NCP1030的漏电流限制阈值为0.5 A),用于提升能效。总的来说,NCP1030是一种集成方案,集成开关管、及监控电路。采用NCP1030实现的电信偏置电源占位面积仅为0.032平方英寸,相比较而言,采用TL384x和MAX6457A等竞争器件实现的偏置电源占位面积达0.344平方英寸,如图3所示。

图3:基于NCP1030的偏置电源比其他解决方案节省超过90%的占位面积。

  测试数据显示,基于NCP1030的偏置电源实现高于80%的能效,线路稳压精度和负载稳压精度分别达到0.5%和8%,适合48 V输入电压,提供12 V输出电压入2 W输出功率,并采用反激拓扑结构,符合目标规范要求。

3) 非隔离电源转换:基于NCP3121的电信负载点电源参考设计
  系统一种常见的电源分配方法是先将48 V电压先转换为12 V电压,再通过负载点(POL)转换器将12 V电压转换为负载所需的电压,常见的有5.0 V和3.3 V等。相应地,我们假定这POL电源参考设计的规范为:输入电压+12 V(精度±10%),两路输出分别为5.0 V@3 A和3.3 V@3 A,能效高于80%,无隔离要求,小尺寸及高功率密度等。

图4:NCP3121内置自动追踪和排序功能,无须使用外部排序器

  电信应用中的负载点(POL)转换器会涉及到为DSP、ASIC、FPGA或CPU等敏感电路供电,需要提供不同负载所需的不同电压,并且具有上电和掉电排序能力,还需要具有小尺寸和高功率密度,能够提供大批量、低成本的解决方案。相应地,我们可以采用半导体的NCP3121集成双路3 A降压稳压器。这器件设计用于需要高能效的低压应用,能够产生低至0.8 V的输出电压。这器件具有200 kHz至750 kHz的可调节开关频率(由外部电阻设定),具有宽温度范围的精密内部参考,采用改善热性能的QFN封装。NCP3121能够作为独立开关转换器操作,同时内置自动追踪和排序特性,保护上电和掉电的排序,防止错误数据加载至输入/输出(I/O)缓冲器,保护ASIC等免受损伤,如图4所示。NCP3121内置的自动追踪和排序能力,消除了使用外部电源排序芯片来管理这项功能并保证性能的需要。

  基于NCP3121的双路输出3 A/3 A电信负载点电源参考设计采用降压拓扑结构,支持10.8 V至13.2 V的输入电压,提供5.0 V@3 A和3.3 V@3 A两路输出,符合于xDSL等电信负载点电源应用要求。

  除了上述解决方案及参考设计,安森美半导体还提供其它解决方案及参考设计,如基于NCP1034解决方案的网络电源参考设计、基于NCP3102解决方案的基站电源参考设计等。更多安森美半导体DC-DC电信和网络电源解决方案请参见相关培训教程(www.onsemi.com/pub_link/Collateral/TND347-D.PDF)。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭