新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > GSM手机端到端安全加密通信系统(08-100)

GSM手机端到端安全加密通信系统(08-100)

—— GSM手机端到端安全加密通信系统
作者:胡嵩、段强、沈弘 东南大学时间:2009-02-26来源:电子产品世界收藏

  3.2 频域置乱

本文引用地址:http://www.eepw.com.cn/article/91758.htm

  在时域加密置乱之前加上一步频域置乱,可以提高整个加密算法的强度。本设计具体的做法是:首先对一定长度语音数据作N点FFT(N可以取2的幂次以提高运算速度),得到一个频谱序列,取在语音频率范围(300~3400Hz)内的M点,组成M行×1列的矩阵x,然后对这个序列进行置乱,这相当于乘上一个M行×M列的置乱矩阵P,那么置乱后的序列为Px,最后对此序列求IFFT,即从频域返回到时域。

  令M为明文信息,k1、r为算法密钥,由k1、r产生的加密矩阵为Pk1、r,Qk1、r为解密矩阵(即Pk1、r-1),C为密文,则有:

 

  置乱矩阵P的选取有以下几点限制:1)保证置乱后的序列再求IFFT得到的是实序列;2)保证只对300~3400 Hz范围内的点进行置乱;3)保证最后得到的语音的剩余可懂度很小。

  满足上述限制条件的矩阵有很多,其中有一种比较简单的形式是这样的[4]:

  

  M=N*(3400-300) / fs =3100N / fs(fs是采样频率),表示频率在300~3400Hz内的点数,称为有效FFT点数。k1和r都是密钥,k1可以取与M互质并且小于M的自然数,r可以取小于M的自然数。

  这样频域置乱的加密强度(本文中指密钥空间)就是M*f(M)(f(M)表示满足条件的k1的个数)。由此可见,采样频率一定,N的大小会影响该算法的加密强度,所以N的选取应该同时考虑运算速度和加密强度两方面的因素。

  3.3 语音帧置乱

  令M为明文信息,k2为算法密钥,由k2产生的加密矩阵为Pk2’, Qk2’为解密矩阵(即Pk2’-1),C为密文,则有:

 

  令分组长度为T,那么时域语音帧置乱的加密强度(密钥空间)为T!。由于我们采用的是两级加密技术,结合前面频域置乱,整个加密算法的加密强度(密钥空间)为M*f(M)*T!。

  3.4 算法参数选择

  通过大量实验研究,发现对测试结果有较大影响的因素有两个:语音分解帧尺寸和分组长度。我们主要选择语音分解帧长为5ms、10ms、20ms、分组长度为15帧、20帧、25帧共九种情况进行了研究分析。

  通过测试和比较,发现以20ms作为语音分解帧长,加密语音可以基本解密恢复,而且所恢复的语音可以很好地满足人耳的可懂度要求。同时根据声码器的编解码原理,20ms作为单位帧长能保持信号的语音特性。因此本方案将选择20ms作为语音分解帧长。

  对于分组长度(用n表示),从整个加密算法的加密强度公式,可以发现n越大,算法的加密强度就越大,但考虑整个加解密系统的延时等因素,n必须取一个合适的值。通过大量仿真测试结果发现,分组长度取20或25可以在这对矛盾间取得一个好的平衡。

  总之,本算法结合了语音信号处理和分组密码加密运算的特点,具有对压缩编码很好的恢复性,其加密强度也可满足需求。



关键词: GSM DSP RPE-LTP

评论


相关推荐

技术专区

关闭