新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 降低告诉DSP系统设计中的电源噪声(05-100)

降低告诉DSP系统设计中的电源噪声(05-100)

——
作者:TI 公司 Thanh Tran时间:2009-02-20来源:电子产品世界收藏

  分离模拟和数字地对于隔离来自模拟部分的数字噪声有帮助。对于低速电路这样做也是良好的。然而,对于高速电路(例如视频部分)应避免分离地。快速开关电流需用最小的电流环路,而隔离地阻止来自选择通路的电流。因此,将选择另外通路到源,这最终导致势差、电流流和辐射。在数字数据进入点把模拟和数字地短接在一起,可提供一个直接通路而不影响低频信号。信号朝实际的最短返回路径到源,而不是短路的通路。

本文引用地址:http://www.eepw.com.cn/article/91454.htm

  

  电容器应用

  适当地应用电容器是降低噪声的有效方法。去耦电容器提供一个低阻抗到地通路来旁路不希望的高频能量。可以用体电容器来旁路低频到地,以及用去耦电容器提供本地电荷存储。

  对于去耦电容器没有最好的值,这是因为反作用影响。通常,电容器阻抗随频率和电容降低。当信号频率超过谐振频率时,电容器变成电感而不再是一个有效的滤波器。尽管低阻抗和更多电荷存储能降低下降,但对于高频信号,高值电容器不是最佳的。理想地,在电源地应包含一个高值和一个较低值电容器。若不能实现,用一个0.01礔电容器是一个可接受的折衷方案。应该用较对大的体电容器,至少10倍于总去耦电容器。

  例如,在100KHZ,100礔电解电容具有0.6Ω左右的等效串联电阻(ESR),同样值的钽电容具有0.12Ω左右的ESR,这使得钽电容更适合体电容器。对于去耦陶瓷电容优于聚酯电容器。例如,在1MHZ,0.1礔陶瓷电容器具有0.12Ω左右的ESR,而1.0礔聚酯电容器具有0.11Ω的ESR。

  去耦电容器应放置在PCB底端靠近器件引脚处。对于高速,去耦电容器应放置在每个电源引脚处。若空间不允许这样做,也应尽可能地放置在器件周围。复杂去耦的一种有效方法是从对角划两个虚线构成一个X(图4)。然后独立分析4个区域的每个区域。

  为使得体电容器靠近去耦电容器,把它们放置在板的顶端。这种定位使线踪最短,同时可降低辐射和寄生电感。

  以公司的OMAP5910 为例,特别注意包含数字PLL和外部存储器接口的区域(图4中左边区域)。该器件有13个芯核电压引脚,峰值芯核电流耗电170mA(平均每个引脚13mA)。在该区域的3个芯核电压引脚包括数字PLL和外部存储器接口,耗电39mA。为了保证精度,在确定电容器大小时,增加100%容限(即78mA)是合适的。必须消除峰值I/O电流。应采用谨慎的方法,假定在此区域所有54个I/O线同时开关4 mA,这将导致216 mA通过此区域的8个I/O电压引脚。

  随着芯核和I/O电压工作不同频率,必须用合适大小的电容器去耦电源。在此实例中,用下面的公式计算,计算的芯核电容为0.0078礔,对于216mA I/O 电流所需电容为0.22礔:C=I(dv/dt)

  其中I为峰值电流,dv为最大所允许的纹波电压(假定10mV),dt为上升时间(假定1ns,OMAP5910典型值)。

  所以,芯核电容C=78mA×(1ns/10mv)=0.0078礔

  在OMAP5910 BGA 封装中,对于每个区域的4个电容器都有足够的空间,没有一个是用于每个芯核电源引脚的。因此,为了去耦芯核电压引脚,最好选择两个电容器,其总值为 0.0078礔(配置两个0.0047礔陶瓷电容器,以使从引脚到地有最短距离)。

  必须考虑开关频率。芯核部分在150MHz开关转换,而8个I/O引脚在75MHz开关转换。可以用另外两个电容器位置来去耦I/O电压引脚(即用两个自谐波振频率75MHz以上的0.01礔陶瓷电容器提供0.022礔)。

  体电容器值

  在此实例中,DSP总芯核电压电流为338mA。用上面的公式计算电容为0.0338礔。做为体电容应该是10倍去耦电容值,大约为0.39礔。对于I/O电压,进行同样的处理,得到0.84礔电容,给出总电容1.23礔。对于体电容器,每个提供3.075礔(1.23礔除以4,然后乘以10),应该把它加到每个区域上。现在可得到的最小体电容值是做为表面贴装元件的4.7礔,此电容值在本例中工作良好。如果没有表面贴装电解电容,应选择钽体电容器。对于4个区域的每个区域去耦和体电容值可以用这种方法计算,并示于图4。■(益林)

锁相环相关文章:锁相环原理

上一页 1 2 下一页

关键词: TI DSP

评论


相关推荐

技术专区

关闭