新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 强激光脉冲能源系统电路优化

强激光脉冲能源系统电路优化

作者:赵娟 曹科峰 曹宁翔 朱利君 陈敏时间:2008-05-15来源:电源技术应用收藏

  基于Gonze模型,我们建立了100J激光装置脉冲放电的Pspice模型,图3给出了其中一路的Pspice模型,该模型利用电流源模型、电压源模型和反馈构成氙灯模型,通过反馈控制氙灯模型的V-I特性将氙灯的非线性电阻特征反映在电路中。

本文引用地址:http://www.eepw.com.cn/article/82647.htm

  实验和模拟计算条件为:电容充电电压15KV,脉冲形成电感100μH,电容140μF,负载为串联的三支氙灯,氙灯参数为:内径18mm,弧长350mm,灯总长540mm,充气压力为200T。

  如图4所示,实测氙灯电流为8.25KA。如图5所示,Pspice模拟计算氙灯电流为8.5KA。Pspice模拟计算结果与实验结果吻合良好。

       

        

  2.3 主放电电路器件选取

  如图6所示,主放电电路由储能电容(C)、高压大电流真空放电开关(K)、脉冲平波电感(L1、L2)、低损耗传输电缆(T)、负载氙灯(R1)组成。

       

  储能电容器是能源充电网络、放电网络中的重要单元,它的性能直接影响到整个的性能和造价。100J输出激光功率放大系统使用“自愈”式金属化介质电容器作为储能元件。由于“自愈”金属膜电容器可工作在高场强(介质绝缘强度附近)下,因而提高了储能密度,减小了体积和重量,进而降低了能源模块的体积和造价。我们根据神光Ⅲ原型装置上高储能密度的金属膜自愈电容器的使用经验采用桂林电容器厂生产的“自愈”式MKMJ20-20型金属化介质电容器。

  高压大电流真空放电开关是由阴极、阳极、触发极和瓷质外壳组成。开关腔抽真空后密封,当触发脉冲施加到触发极时,触发极表面产生场致使阴极发射自由电子,自由电子在电场作用下加速并轰击阳极,在二次电子发射作用下开关闭合。该型开关结构简单,易于使用,对触发脉冲的要求不高。

  每个能源模块中有两只脉冲平波电感元件。平波电感的作用是:使每个模块的两个氙灯放电电路的电流均匀分配,并与氙灯阻抗匹配使放电电路处于临界阻尼状态。降低电缆损耗是提高能量传输效率的重要手段,可以采用增加电缆截面或降低材料的电阻率的方法实现。考虑到现有电缆加工条件,选定增加电缆截面的方法。采用专用低阻电缆,该电缆内导体采用铜绞线,外导体为双层铜线编织,绝缘介质为聚乙稀,电缆外皮为弹性体护套,直径为23.5mm,在测试频率为1kHz的条件下电阻为0.9Ω/km。

  负载氙灯由上海光机所研制。其参数为:内径18 cm,弧长350 cm,灯总长540 cm,充气压力为200T。

  3 实验结果

  100J脉冲进行了一系列的调试实验。图7给出了一级两路氙灯负载放电的电流波形(采用Rogowsky线圈测量),两路电流分配均匀,波形基本重合。图8给出了三级氙灯负载放电的电流波形,三级氙灯放电回路按设定的延迟时间准确触发,延迟时间可以按要求准确调整。能源系统输出脉冲能量、电流幅值和波形均满足100J激光放大系统要求,系统工作稳定、可靠。

        

  4 结语

  通过实验研究,能源系统的电路结构和关键器件得到了优化,达到了100J输出激光功率放大系统能源系统的性能指标。应用以大电流真空开关、低损耗电缆为核心的电容器一端接地结构及、屏蔽等措施有效地抑制了地电位的抬高,提高了系统的抗电磁干扰能力,实现了系统的模块化。同时,低损耗电缆的使用提高了能源系统的能量转换效率,为放大器效率的提高奠定了基础。以计算机测控技术为核心的闭环控制系统实现了系统的自动化。整套能源模块试验表明,本设计满足100J激光放大系统对能源模块的技术要求,理论计算结果和实验测试结果基本一致。下一步能源模块研制工作将在预电离技术上开展,预电离技术不仅能检验闪光灯的完好性,而且有利于延长闪光灯的寿命和提高放大器的效率。

DIY机械键盘相关社区:机械键盘DIY



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭