新闻中心

EEPW首页 > 嵌入式系统 > 牛人业话 > 傅立叶变换、拉普拉斯变换、Z变换最全攻略

傅立叶变换、拉普拉斯变换、Z变换最全攻略

作者:时间:2015-07-19来源:网络收藏

  、Z变换之间最本质的区别

本文引用地址:http://www.eepw.com.cn/article/277444.htm

  傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。

  

  定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω 是复参变量,称为复频率。左端的定积分称为拉普拉斯积分,又称为f(t)的;

  右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。

  以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。

  如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt

  其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。

  z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。

  拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。

  FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换 ,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换 中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。 拉普拉斯变换 主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。但随着CAD的兴起,这一作用已不怎么受重视了,但关于其收敛域的分析(零极点图)依然常用。 Fourier变换则随着FFT算法(快速)的发展已经成为最重要的数学工具应用于数字信号处理领域。

  而Z变换,简单地说,就是离散信号(也可以叫做序列)的拉普拉斯变换 ,可由抽样信号的拉普拉斯变换 导出(如果你想要更多,我可以导给你看),表示式如下:

  ZT[f(n)]=从n为负无穷到正无穷对[f(n)Z^(-n)]求和 ,其所变换的域称之为“Z域”。

  是拉普拉斯变换的一种特例,在拉普拉斯变换中,只要令Re[s]=1,就得到傅立叶变换。当然,两者可以转换的前提是信号的拉普拉斯变换的收敛域要包含单位圆(即包含圆周上的点)。

  很多信号都不一定有傅立叶变换,因为狄力克雷条件比较苛刻,而绝大多数信号都有拉普拉斯变换。故对于连续信号,拉普拉斯变换比傅立叶变换用得更广泛。

  两者的共同点:都把时域函数转换为频域函数(对于拉普拉斯变换来说,是转到复频域上)。另外,两者都能很方便地解出低阶微分方程。

  这三种变换的本质是将信号从时域转换为频域。傅里叶变换的出现颠覆了人类对世界的认知:世界不仅可以看作虽时间的变化,也可以看做各种频率不同加权的组合。举个不太恰当的例子:一首钢琴曲的声音波形是时域表达,而他的钢琴谱则是频域表达。

  三种变换由于可以将微分方程或者差分方程转化为多项式方程,所以大大降低了微分(差分)方程的计算成本。

  另外,在通信领域,没有信号的频域分析,将很难在时域理解一个信号。因为通信领域中经常需要用频率划分信道,所以一个信号的频域特性要比时域特性重要的多。

  具体三种变换的分析(应该是四种)是这样的:

  傅里叶分析包含傅里叶级数与傅里叶变换。傅里叶级数用于对周期信号转换,傅里叶变换用于对非周期信号转换。

  但是对于不收敛信号,傅里叶变换无能为力,只能借助拉普拉斯变换。(主要用于计算微分方程)

  而z变换则可以算作离散的拉普拉斯变换。(主要用于计算差分方程)

  从复平面来说,傅里叶分析直注意虚数部分,拉普拉斯变换则关注全部复平面,而z变换则是将拉普拉斯的复平面投影到z平面,将虚轴变为一个圆环。(不恰当的比方就是那种一幅画只能通过在固定位置放一个金属棒,从金属棒反光才能看清这幅画的人物那种感觉。)

全息投影相关文章:全息投影原理


评论


相关推荐

技术专区

关闭