新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于ATmega8的无线扩音系统设计

基于ATmega8的无线扩音系统设计

作者:时间:2015-01-26来源:网络收藏

  无线扩音系统的广泛应用,解决了实际工程中的布线和移动使用的难题。无线传输方式也从传统的U段、V段无线扩音发展到今天的红外线、蓝牙和2.4 GHz频段的无线数字传输方式。传统的模拟信号无线扩音设备发射器的使用会受到同频、邻频或外界电波干扰,扩音的回输较大,而且高频电波辐射大,扩音回输会对人的耳膜造成一定的伤害。音频在数字信号传输过程中受干扰的可能性小、抗干扰能力强。数字无线扩音系统可广泛应用于教学、会场、现代办公、家居生活等领域。

本文引用地址:http://www.eepw.com.cn/article/268651.htm

  工作于2.4 GHz的ISM。频段有4亿个可用地址码,可通过跳频询址技术保证在同一场所同时使用而不串频。发射信号的频带宽度大于所传信息必需的最小带宽,而频带的展宽是通过扩展功能实现,与所传信息数据无关,并只有发射器和接收器知道,在接收端则用相同的扩频码进行相关解调来解扩及恢复所传信息数据。数据被所有的跳频点所携带,如果噪音没有影响到所有的跳频点,信息就可以被修复,一定条件下可以有多个系统在同一频率范围内共存。文中介绍使用 射频收发器件进行开发的无线智能跳频数码扩音器设计方案。利用智能跳频询址技术,使发射机可更迅速地自动被接收机识别,任意发射机可以匹配任意接收机,匹配后自动锁定直至发射机关闭或者离开无线电覆盖范围。在无障碍物的直线传输条件下输出功率为5 W、发射和接收有效距离≤60 m。

  1 系统分析与设计

  系统由、发射和接收系统构成。音频信号由发射端的前端信号处理电路放大后送往内部A/D进行采样,MCU将采样所得数据打包通过RF模块发送出去。接收端MCU从RF模块读取数据包,并将其送至MCU内部的TIMER1进行PWM调制,然后输出至外部低通滤波器,最后还原得到相应的音频信号。系统原理如图1所示。

  

 

  1.1 主控MCU模块

  MCU选用AVR系列的,其是基于增强AVR RISC结构的低功耗8位CMOS微控制器。由于其先进的指令集以及单时钟周期指令执行时间,的数据吞吐率达1 MIPS/MHz,16 MHz时性能达16 MIPS,因此可缓减系统在功耗和处理速度之间的矛盾。工作电压2.7~5.5 V,内部集成8路10位ADC、SPI串行接口、16位带PWM调制输出的定时器、512 Byte的EEPROM。其内部资源能满足发射端和接收端MCU的要求。

  1.2 RF模块

  是一款新型单片射频收发器件,工作于2.4~2.5 cHz ISM频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。可进行地址及CRC检验功能。功耗低,在以-6 dBm的功率发射时,工作电流9 mA;接收时,工作电流12.3 mA,多种低功率工作模式使节能设计更方便。收发双方传输信号的载波按照预定规律进行离散变化,以避开干扰、完成传输。总之,跳频技术FHSS不是抑制干扰而是容忍干扰。由于载波频率是跳变,具有抗高频及部分带宽干扰的能力,当跳变的频率数目足够多和跳频带宽足够宽时,其抗干扰能力较强。利用载波频率的快速跳变,具有频率分集的作用,从而使系统具有抗多径衰落的能力。利用跳频图案的正交性可构成跳频码分多址系统,共享频谱资源,并具有承受过载的能力。

  1.3 音频放大

  如图2所示,该电路U5A、R8、C17、R7、R14、R9、R16、R13负责麦克风输入信号的放大,放大倍数为10倍。其中R8给麦克风提供直流偏置,经过C17耦合至运放U5A。R7、R14、R9用于给运放提供一个虚拟地。如果有3.5 mm的音频信号接头插入J5时,后续电路会断开和前级放大的连接,从而实现MIC声音和外部音频输入的切换。U5B、R11、R15、R17、R19、C21负责输入MIC和外部音频信号的放大,放大倍数为5倍,原理与前级放大相似。运放选用LMV358,LMV358是一款Rail to Rail双运放,工作电压在2.7~5 V,增益带宽乘积为1 MHz,工作电流140μA,适合电池供电。

  

pa相关文章:pa是什么


低通滤波器相关文章:低通滤波器原理


燃气报警器相关文章:燃气报警器原理

上一页 1 2 下一页

关键词: ATmega8 MCU nRF24L01

评论


相关推荐

技术专区

关闭