新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 如何构建仪表放大器

如何构建仪表放大器

作者:时间:2008-08-08来源:网络收藏

本文引用地址:http://www.eepw.com.cn/article/258640.htm  两运放

  如果不需要三运放结构如此高的性能,可使用两运放结构进行简化。这种结构的主要优点是结构简单,它只需要两个运算放大器和四个电阻器,如图5所示。由于很少有包含三个运放的器件,因此三运放结构通常需要使用一个四运放器件。而多余的一个运放需要消耗更多的功率,所以两运放结构在能耗方面也会更低。此外,和三运放结构一样,两运放结构电路也具有很高的输入阻抗。但是两运放的性能要差一些,通过计算分析,这种结构的共模抑制比对电阻器阻值变化的灵敏度比差分放大器结构略高一些。最坏情况下,对于0.1%的电阻器匹配条件下的CMRR不是54 dB,而是50.5 dB。与三运放不同的是这个CMRR数值不随增益的增加而改善。由于两个通路不平衡,同相通路信号的频率响应与反相通路信号不同。由于反相通路要通过两级电路而不是一级电路,因此在反相通路中出现了一个相位延迟,并且压摆率和带宽特性也会不同,其噪声性能也会差一些。

  两运放仪表放大器常见的问题是:

  1)由于第一级的输出电压即放大了的输入电压,其中包括共模电压,因此需要注意第一级的输出电压;

  2)由于两运放仪表放大器的CMRR对于电阻的匹配情况极为敏感,因此需要注意电阻器的匹配;

  3)高频性能。因此,对于这三种结构来说:差动放大器 这种放大器很好,也很简单,只需要一个运算放大器和四个电阻器。然而,它的输入阻抗与所选电阻器的数值有关,而且噪声和CMRR的性能也较差。

  2)三运放仪表放大器 第一级电路提供高输入阻抗。当我们在第一级电路中引入增益时,还提高了噪声和CMRR的性能。

  两运放结构仪表放大器 这种电路结构比三运放结构简单得多,并且也具有很好的输入阻抗特性。然而,其噪声和CMRR性能不能随着增益的增加而改善。

  实例分析:混合设计

  如果已经找到了基本符合要求的仪表放大器,但某一指标无法满足需求,此时可以利用现有仪表放大器加上辅助电路达到目的。

  噪声是仪表放大器的一个重要指标,现在很多运放都具有非常低的噪声系数,如果要求更低的噪声,则可以采用分立设计方法构建仪表放大器。然而这需要花费很大的精力来设计、布局和调试,而得到的共模抑制比又低于单芯片仪表放大器。图6所示的混合设计节省了设计时间和电路板空间,同时得到了与单芯片仪表放大器同样好的共模抑制性能。

  这里所示的混合设计分为三级:运放组成的前置放大器,后面是仪表放大器。每一级的噪声都比前一级大,然而,由于为每一级都分配了增益,所以各级对系统最后的噪声没什么影响。如果用一个2.61 K的电阻将AD8221的增益设定为20,也可以将所有的增益都放在前置放大级,而使AD8221的增益为1。而AD8599的增益带宽积为10MHz。如果将总的增益都放在第一级,那么其带宽将会被限制在20 kHz。在两个元件之间分配增益,得到总带宽大约为300 kHz。


上一页 1 2 下一页

关键词: 仪表放大器

评论


相关推荐

技术专区

关闭