新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于TopswitchⅡ型开关芯片的开关电源设计

基于TopswitchⅡ型开关芯片的开关电源设计

作者:时间:2014-06-11来源:网络收藏


4.2输入滤波电容的选择

输入滤波电容器C 的容量与电源效率,输出功率密切相关,对于宽范围输入的,C 的容量取μF 为单位时,可按比例系数3μF/ W 来选取。例如当Po= 30 W 时,C= ( 3μF/W)×30 W= 90μF, 以此类推。在固定输入时,比例系数变成1μF/W, 上例中的C 就变成30μF.在设计时还要注意C 的容量误差要尽量小,以免影响的性能。当C 的容量过小时,会降低TopswitchⅡ的可用功率。如果把30μF 改成20μF, 则输出功率会降低15 %; 当C 20μF 时,会造成可用功率的明显下降。
另外,C 容量的大小还决定直流高压Ui 的数值,图3、图4 实际上是在Ui= 105 V 的情况下绘制的,这个充分体现了C 对Ui 的影响。

4.3 开关管保护电路

在开关芯片的漏极D 侧可以利用VDZ 和VD 两个二极管对高频变压器的漏感产生的尖峰电压进行箝位,可保护μ的D-S 极间不被击穿。例如VDZ 可以选用瞬态电压抑制器P6K200, 其反向击穿电压为200 V.VD 采用反向耐压为600 V 的UF4005 型超快恢复二极管,亦称阻塞二极管。

5 应用电路及其仿真

图6给出了由TOPSwitch 构成的反激式电源的原理图。其工作过程如下: 输入交流电经整流桥BR1 整流后再经电容C1 滤波,变为脉动的直流电。

反激式变压器与TOPSwitch 将存储于电容C1 的能量传递给负载。当TOPswitch 开关管导通时,电容C1两端的电压加到反激变压器的原边,流过原边绕组的电流线性增加( 如若在MOSFET 开关管导通的瞬间变压器副边电流不为零,则由于副边感应电势反向,二极管D2 截止,副边电流变为零,然而磁芯内的能量不能突变,故原边电流跃变为副边电流的1/ K,K 为变压器变比),变压器储存能量; 当MOSFET 开关管关断时,电感原边电流由于没有回路( 此时,稳压管VR1的击穿电压因高于原变压器的感应电势而截止) 而突变为零,变压器通过副边续流,副边电流为TOPswitch 开关管关断时原边电流的K 倍,副边绕组通过二极管D2 对电容C2 充电,此后,流过变压器副边的电流线性下降。二极管D1 与稳压管VR1 并接于变压器的原边以吸收由于变压器原边的漏感而产生的高压毛刺。电阻R1、稳压管V R2、光耦U2 与电容C5 构成了电压反馈电路以保证输出电压稳定。电阻R2 与VR2 构成一假负载,以保证当电源空载或轻载时输出电压稳定。电感L1 与电容C3 构成LC 滤波器以防止输出电压脉动过大。二极管D3 与电容C4 构成一整流电路以提供光耦U2 光电三极管的偏置电压。电感L2 、电容C6 和C7 用于降低系统的电磁干扰( EMI) .

  

图6 反激式电源的应用原理图。

图7分别给出了输入电压220 V ( 交流),输出功率为40 W; 输入电压85 V ( 交流),输出功率为24 W和输入电压85 V( 交流),输出功率为40 W 时的输出电压波形。

  

图7 不同电压输入条件下的电压仿真输出波形

6 结语

最后通过仿真试验,对电源的设计过程进行了认证,结果表明,基于topswitch 芯片设计的开关电源,输出波形较为稳定,而且电磁兼容性好,抗干扰能力强,适合小功率开关电源的设计制造。是现代电力电子系统中的重要组成部分,好的直流电源系统是高质量现代电子系统的重要保证。

本文引用地址:http://www.eepw.com.cn/article/258330.htm

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭