新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于LabVIEW和声卡的虚拟仪器设计与实现

基于LabVIEW和声卡的虚拟仪器设计与实现

作者:时间:2014-07-21来源:网络收藏

  3)使用声音输入清零函数停止数据采集,清空缓存,从任务返回至默认的未配置的状态,并清空与任务相关的资源,使任务变为无效。

本文引用地址:http://www.eepw.com.cn/article/255832.htm

  3.3.3 波形显示和频谱分析模块

  信号从数据采集模块输出后乘以标定比率,然后分成两路,一路直接进入波形图控件在前面板显示信号的时域波形,另一路进行FFT分析后再输入波形图控件在前面板显示信号的频谱图。

  3.3.4 XY轴设置模块

  波形显示模块负责显示波形,并且可以通过旋钮来控制X轴和Y轴量程和偏移,同时根据通道的选择(通道A或者通道B)显示相应的波形。

  X轴控制是时间轴调节。“X轴精度”调节每刻度显示的时间长度。在该控件中设置6个档位,档位越小显示的越精确。“X轴精度”中0.5ms/div档表示时间轴是从0~0.003 s,增量为0.5 ms,起始时刻为0。由于屏幕大小限制,还需要“X轴偏移”来调节屏幕标尺来显示其他部分的波形,在该控件中设置了14个档位,档位每增加一位屏幕显示向右移动一格。

  Y轴控制是幅度调节。“Volts/Div”调节每刻度显示的电压值,在该控件中设置5个档位,档位越高每格显示的电压越大精确度越低。“Y轴偏移”控制信号在Y轴方向上下移动,该控件与信号相加可以使信号整体向上或者向下移动。设标定比率为N,则Y轴偏移的范围为-N~+N。

  3.3.5 触发控制模块

  示波器的触发功能可以稳定重复的波形,捕获单次波形,这对清楚地检定信号至关重要。虚拟示波器触发控制模块通过子VI来实现,如图7所示。的输入端有波形数据输入(通道A、通道B)、触发极性(Slope)输入(上升沿、下降沿)、触发电平(Ievel)输入、触发源(Source)输入(内触发、外触发)。

  

 

  程序运行后,首先判断用户触发源的选择,当触发源选择“外触发”时,直接将输出的波形数据输出;当触发源选择“内触发”时,执行边沿子VI。

  

 

  边沿子VI由一个波形数组索引实现,该子程序实现选择触发源、根据触发电平的大小和触发极性进行触发的功能。其原理如图8所示,首先判断用户设置的触发电平大小是否在波峰和波谷范围内,在此范围内则进行触发。对输入电压信号的第i点和i+1点的值进行比较,正极性触发时,若第i点的值等于或小于触发电平,同时第i+1点的值大于触发电平,则第i点为触发点,将此值送入触发子VI数组子集函数的“ind ex”端口,每次采集数据后,都从触发点开始提取子数组,送入前面板,实现波形的同步显示。负极性触发时与之相反。

  3.3.6 图像暂停与截图模块

  图像暂停模块通过条件结构来选择相应的程序,当前面板的开关拨到“工作”时,执行“真”条件分支,前面板正常显示波形,当开关拨到“暂停”,执行“假”条件分支,数据不再输入给波形图控件,前面板显示的波形静止。

  截图保存模块通过波形图的属性节点Get Image来实现,可以将当前显示的波形截图并保存为bmp格式图片。需要截图时先用暂停功能将波形静止,再保存截图。

  4 结论

  文中基于图形化编程软件开发了虚拟信号发生器和虚拟示波器,特别适合于实验室环境下低频信号的产生与分析。所设计的虚拟信号发生器和示波器具备传统仪器的功能,相比于传统仪器,具有成本低廉、灵活性好、扩展性强等优点。但在实际应用中,它也存在一些缺陷,例如对输入信号的电压要求不能超过1 V,即有幅度限制;根据奈奎斯特采样定理,当采样频率为44 kHz时,理论上能测量的信号最高频率为22 kHz,但实际上所能准确测量的信号频率达不到该理论值,即频率限制。后续工作中需要设计外围的放大和衰减电路以增大可测信号的动态范围,并对仪器的功能进行完善。

dc相关文章:dc是什么


c++相关文章:c++教程


模数转换器相关文章:模数转换器工作原理


负离子发生器相关文章:负离子发生器原理
离子色谱仪相关文章:离子色谱仪原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭