新闻中心

EEPW首页 > EDA/PCB > 设计应用 > 基于Saber的无刷直流电机控制系统仿真

基于Saber的无刷直流电机控制系统仿真

作者:时间:2014-07-21来源:网络收藏

  如图4为一个三相逆变器的半桥电路原理图。

本文引用地址:http://www.eepw.com.cn/article/255831.htm

  

 

  对于低端的管子Q4,由于其源极(s)接地,所以当控制Q4导通时,只要在Q4的栅极加大于阈值的电压信号Ud即可;但对于高端的管子Q1,由于其源极电位U是浮动的,仅靠单独在Q1的栅极上施加电压信号Up控制Q1导通比较困难。

  基于以上分析,功率开关管一般采用直接驱动和隔离驱动两种方式。对于隔离驱动模式,6个功率开关器件都采用独立的驱动电路驱动,都需要一组辅助电源,各个电路之间还要互相悬浮,增加了电路的复杂性,可靠性下降。而自举型功率桥驱动集成电路具有独立的低端和高端输入通道,悬浮电压采用内置自举电路完成,仅需要一个直流电源,就可输出半桥功率开关管的驱动脉冲。

  本文三相逆变桥的功率驱动集成电路采用IR美国国际整流器公司生产的专用驱动芯片IR2110,功率开关管选用MOSFKTIRFP260N。IR2110驱动一个半桥的电路如图5所示。其中,C1、VD分別为自举电容和二极管,Rg为栅极串联电阻。

  

 

  自举电容C1用来给高端IRFP260N提供悬浮电源。一个半桥的高端管在导通前需要先对自举电容C1充电,当C1两端电压超过阈值电压,高端管开始导通。自举电容必须能够提供功率管导通时所需要的栅极电荷,并且在控制高端管导通期间,自举电容两端电压要基本保持不变。自举电容过小,导致自举电容可能有较大的纹波。自举电容取值一般为0.1~1μF,这里选择自举电容值为1 μF。

  当高端IRFP260N管开启时,自举二极管D1必须承受着和IRFP260N漏极相同的电压,所以二极管的反向承受电压要大于母线电压,并且应该是快恢复二极管,以减少自举电容向电源的回馈电荷。

  建立逆变器电路的分析模型并进行分析,高端管Q1、低端管Q4的控制信号G1_C、G4_C,Q1管的栅极驱动信号Q1_G,栅源电压Q1_GS,Q1、Q2的中点电位U,Q4管的栅极驱动电压Q4_G分析结果如图6所示。

  

 

  在图6中,在时刻“1”,低端Q4功率管的控制信号Q4_C有效,经过驱动集成电路IR2110后,Q2的栅极驱动信号Q2_G为11.988 V,其栅源电压大于IRFP260的导通阈值,Q2导通,此时Q1管关断;在时刻“2”,低端Q1功率管的控制信号Q1_C有效,经过IR2110后,Q1的源极电位U为90V,Q1的栅极电位Q1_C被自举电容升高到101.95V,此时Q1的栅源电压Q1_GS为11.95V,大于功率管的导通阈值,Q1导通,此时Q2关闭。可以看到,三相逆变器电路的设计可以可靠控制功率管的开通和关断。

  2 系统功能仿真

  设置无刷参数如下,2对极,单相绕组电阻为1.65 Ω,绕组电感为1 mH,反电动势系数ke=0.048,转子转动惯量为j=4.189 x10-6 kg*m2。设置PWM占空比为0.6,频率为10 kHz,对整个电机控制系统进行仿真。三相绕组的电压U、V、W,电机转速Wrm,电机转子机械转角Theta的仿真分析结果如图7所示。

  由上图可以看到,由于PWM占空比为0.6,无论正向转动还是负向转动,电机均处于加速状态:当DIR为“0”时,电机向负方向转动;当DIR为“1”时,电机正向转动。从结果可以看到,无刷控制系统工作正常。

  3 结论

  本文利用仿真软件完成了无刷直流控制系统的建模与分析,系统仿真试验证明,控制系统工作正常,仿真精度高,其仿真结果与理论分析相吻合。Matlab/Simulink仿真软件主要适合电机控制系统研究,Pspice仿真丁具主要适合电力电子电路的分析,软件包含丰富的电力电子元器件、电机模型库,运算精度高,同时具备以上两种分析工具的优点。因此,基于的电机控制系统的仿真分析,可以在掌握系统的动态特性的同时,实现对电路设计的详细设计和精细分析,对控制策略、算法进行验证,从而更加有效地进行系统和分系统设计为电机控制系统的应用提供了非常有效的设计手段。

pwm相关文章:pwm是什么


霍尔传感器相关文章:霍尔传感器工作原理


霍尔传感器相关文章:霍尔传感器原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭