新闻中心

EEPW首页 > 测试测量 > 设计应用 > 如何把示波器上的FFT 做成极致

如何把示波器上的FFT 做成极致

作者:时间:2012-07-27来源:网络收藏

一,有了数字示波器,我们对波形的处理就不在单纯了,不再只是停留在看看波形形状,不再满足只是测量几个参数了。

我们总想着对采下来的数据做更多的处理,示波器更准确的理解,它更像一个波形分析仪正是工程师的不满足,才有我们不断追求推动极限的动力,因为我们经常低估我们的潜力,极限到底在哪? 到底是谁最先把(快速傅里叶变换)用在数字示波器里边呢,说法很多。好像突然间,大家在示波器上都发现有 功能了,而且都是标准配置,虽然都有这个功能,但是做成的结果千差万别,速度和指标也都各不相同,任何事情开始阶段都相同,都先追求有,再谈差异化。况且示波器本身是个定性的工具,谁又在乎示波器在频域上的指标精度呢,除了我们可爱的研发工程师。情况在变化,很多时候用户希望通过一个仪器来解决所有问题,因为说实话,很多工程师没有条件在桌上摆上电位计,频谱仪,示波器,矢网。多数情况,示波器把采集下来的时域数据样本,进行软件fft 运算,变成频域的样本,再通过数据重组,把频域的样本显示出来。

1.jpg

fft 的能力取决于一下几个指标: 存储器大小,软件运算速度,动态有效位ENOB,底噪。因为这些指标直接决定fft 后的刷新速度,动态范围,灵敏度,分辨率带宽RBW。

二,示波器的fft 能解决什么问题呢?

受限于手头的工具(所有工程师都梦想桌上摆着最先进的示波器和频谱仪),而且很多时候工程师调试电路时候需要先定性观察一下,fft 就成了看频谱的好工具了。说实话,很多厂商fft 功能都做得差强人意,无非两类原因,一类是不具备做好的能力,把频谱分析做好还是需要很多DSP 高手和射频技术实力的;还有一类是能做好,但是主观上又不太想把fft 做的太强,做得太好,那我频谱仪怎么卖啊,这里有个机会成本的问题。但是fft 还是能解决些问题的,比如看看谱性范围,看看谐波成分,看看谐波占比,粗略看看频谱干扰等等,但往往也会带来些尴尬问题,比如采样芯片是由多片叠拼时候,就会暴露叠拼的谱线,处理速度慢得也会让人崩溃,底噪有点太离谱,抖动分量占比有点乱,回避这些问题当然会想出些些好方法,比如限制fft 分析样本,这样不至于长存储fft 时死机,比如波形平均降低些底噪等等。

三,示波器的fft 是鸡肋吗?

不能不说,有时候真是鸡肋,处理速度太慢,稍微大一点样本就跟死机差不多,RBW 太离谱,谐波抑制比很差,噪声还经常把谐波淹没,动态范围也差得不行。但其实我们的很多场合,如果fft 功能足够好的话,就不是鸡肋,是鸡腿了。比如,测试滤波器和系统的脉冲响应(特性曲线),分辨和定位噪声干扰源,确定乱真辐射,抖动分析,谐波功率分析,EMI 分析。这么看fft 大有用武之地啊。

四,我们把示波器上的频谱分析功能做到极致,怎么做到的?

首先要把频谱分析的速度提高上去,实时刷新,所以你看不再忍受示波器fft 变换时候类似死机一般,其次我们把RBW 做到了高达1Hz,这个水平几乎只有频谱仪才能做到啊,我们的界面设计和频谱仪的操作一摸一样,中心频率,频谱范围,起始频谱,截止频率,RBW 设置,窗函数设置,把频谱仪的设置几乎全部移植过来了。下面从四个方面论证我们怎么把fft 功能做到极致的:

1,专用数字下变频器

传统的做法是,示波器把信号样本采集下来,然后通过软件算法来进行软件运算,速度非常慢,我们的方式通过专用的硬件加速集成电路(ASIC),把fft 功能交给这个硬件电路来实现,速度快到几乎不影响原始波形的刷新速率。当然这个ASI 是需要花大把银子来研发的。核心对比用到了专用的 电路,我们看看传统示波器怎么fft 的

2.jpg

我们的示波器fft 原理

3.jpg

上图的对比可以看出来,在窗函数之前会进行一个 处理,通过用户设置中心频率,设置初始和截止频率,处理的结果是只对关心的频段,或者说设定好的频段进行处理。传统方式必须对所有频段范围的进行fft 运算,然后选择一段频率来显示,运算的数据量非常大。反过来我们的原理是仅对你感兴趣的频段或者你选择的初始频率和截止频率范围内进行处理,当然极限情况也是选择全频段来处理,这样就有机会减少数量量的处理,把处理能力集中在DDC 之后的范围内。下面两张图更加清晰告诉传统方式和我们方式的区别。


上一页 1 2 3 下一页

关键词: FFT DDC 数字信号处理

评论


相关推荐

技术专区

关闭