新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于MMA8452Q加速度传感器的计步器设计

基于MMA8452Q加速度传感器的计步器设计

作者:时间:2014-07-09来源:网络收藏

  引脚INT1和INT2可以配置成“推挽”或“开漏”输出方式,即可以“高电平有效”也可以“低电平有效”。如果被配置成“开漏”输出方式并且外带上拉电阻,该引脚就被设置为“低电平有效”,刚好与8051的外部中断信号吻合。

本文引用地址:http://www.eepw.com.cn/article/249451.htm

  设计将中断引脚INT1与“运动检测”事件绑定在一起,当人体迈步时垂直加速度开始增加,当达到预定的阈值时,中断申请信号发出,通知控制器读取当前加速度值,经进一步分析确定是否是有效计步信号。中断使用的关键是合理阈值的确定。

  该传感器在静止时显示一个g(重力加速度),当人体运动时,运动加速度与重力加速度叠加。传感器可以输出12位二进制加速度值,该数值是有符号数,正数的最大值为7FFH。本量程选择的是2 g,传感器静止时感受重力加速度为g,所以显示数值为3FFH。通过实验获取了大量的数据,分析每迈一步加速度的变化情况。选取加速度值大于g的数据为研究对象,将它们显示的数据转化为十进制数。3FF对应的十进制数是1023,对应的加速度为g。从而得出1个LSB所对应的加速度值为0.000 98 g。我们试验程序采集的数据如表1所示,数据表明每走一步,可以收到2~3组数据,其中至少有一组超过1.1g,表中带下划线的数据为超过1.1 g的加速度值。

  

 

  当试验人员原地晃动时,得到的10组加速度值如表2所示。

  

 

  经过对人行走、跑步、晃动等加速度变化的分析,综合考虑选取1.1 g为加速度阈值。在传感器中有一个阈值寄存器,数值范围为0~127,阈值最低分辨率为0.063 g/LSB。1.1 g/0.063 g=17.46.四舍五入到18,所以阈值寄存器中送阈值12H。

  2.2 软件方法

  2.2.1 时间窗口的限制

  利用传感器自身的滤波和阈值中断的方法,能够减少频率较低、幅度较小的干扰,但是仍然会有误计数的可能,特别是多计数。需要采取软件滤波方法,进一步滤除无用信号。根据图2所示垂直加速度的信号波形,两次峰值是有时间间隔的,根据资料显示,人行走的频率一般在110步/分钟(1.8 Hz),跑步时的频率不会超过5 Hz。如果选择1~5 Hz,对应的时间间隔是1 000~200毫秒。利用定时中断记录两次外部中断时间间隔,如果在有效范围内,则为有效计步一次,否则无效。

  实际上正常行走的任一段时间内,步频的变化都会集中在峰值频率附近的一个小范围内,而不是0.5~5 Hz这么宽。由于每个人的步频是不同的,可以采用下述的自标定方法得到个人步频的峰值频率和变动范围,再采用时间窗口的限制,检测的准确度更高。

  2.2.2 自标定方法

  配置了两个按键:“直接计步按键”、“自标定按键”。如果计步器工作后直接按下“直接计步按键”,计步器按1~5Hz的行走频率设置时间窗口,并按这个参数进行数据分析。如果计步器工作后先按下“自标定按键”,则进入自标定过程。连续行走10步,每走1步要同时按下“自标定按键”一次。计步器会记录10次的时间间隔ti(i=0~9),求出平均值Tp,及偏差vi=|ti-Tp|(i=0~9).南此确定个人的行走频率范围,并利用时间窗口的限制进行数据分析,可以得到较高的准确度。

  2.2.3 计步器主要程序流程图

  计步器的主程序流程图如图4所示,外部中断流程图如图5所示。开始工作后首先进行初始化、显示初始界面,然后等待按键信号。如果按下“直接计步键”,则使能外部事件中断,等待外部中断的到来。当加速度传感器检测到外界加速度大于所设阈值,将会产生中断信号,进入中断程序后,读取传感器的加速度数据,并读取自上一次外部中断后的时间间隔,如果时间间隔在有效区间内,则本次数据有效,计步数据加1,并将计时单元清零,为下一次中断做准备。

  

 

  

 

  如果先按下“自标定键”,则先进入自标定过程(如前所述),然后再按下“直接计步键”,则按照自标定过程获得的步频参数进行数据分析。

  定时中断程序比较简单,单纯的计时供计步分析使用,这里不再赘述。

  在传感器的初始化中,配置为运动检测方式,包括如下步骤:

  1)使传感器进入待机模式;2)使能垂直方向运动检测和锁存;3)设定运动检测阈值;4)设置去抖计数器以消除虚假读数;5)启用系统中的运动/自由落体中断功能;6)将传感器切换到主动模式。表3中列出了配置MMA8452Q的运动检测或自由落体检测的重要寄存器。

  

 

  3 结论

  文中介绍了基于MEMS加速度传感器MMA8452Q的计步器设计方案,充分利用该传感器对模拟信号检测的滤波处理能力,配合软件措施,通过检测人行走时腰部产生的垂直加速度变化,实现间接检测步数的目的。该设计硬件简单,实现方便。试验结果表明:能够较好地适应不同步频情况,计步精度较高,稳定性好。

模拟信号相关文章:什么是模拟信号


滤波器相关文章:滤波器原理


滤波器相关文章:滤波器原理


传感器相关文章:传感器工作原理


风速传感器相关文章:风速传感器原理
高通滤波器相关文章:高通滤波器原理
加速度计相关文章:加速度计原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭