关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 通用微处理器等效老化试验方法分析与研究

通用微处理器等效老化试验方法分析与研究

作者:时间:2008-11-26来源:网络收藏

  等效老化信号的确定

  对于不同的电路,由于其设计和制造工艺不同,其额定工作电流和都不一样,由(4)式可知,电流Icc随信号频率线性变化的斜率不同。因此,不同产品在相同的信号频率下老化,其“归一化老化电流”α会有较大的区别,老化并不一致。

  针对两种功能相同,工艺和设计都不同的产品,老化的外围线路图是相同的。令两种产品的“归一化老化电流”为α,它们的额定工作电流分别为I cco1和I cco2,电流随频率变化的斜率分别为K1=C1V1、K2=C2V2,就可以分别确定出动态老化信号频率:(6),(7)式中,α是根据可靠性要求和工程情况综合确定的,额定工作电流I cco可以测试或从产品手册中查出,电流随频率变化的斜率k 可以通过试验的方法求出,等效老化的信号频率也就随之确定。

  通用CPU 等效老化方案设计

  通用CPU 老化线路设计

  老化技术从静态老化、动态老化发展到功能性老化,功能性老化被认为是探测器件缺陷的一种更好的方法。然而进行功能性老化需要将测试设备与老化设备有机地结合起来,设备非常昂贵,目前国内还没有条件进行功能性老化。基于国内的现状,文中不涉及CPU 功能性老化及老化向量集的研究,重点在于研究等效的CPU 动态方法。

  参照国内外一些老化方案,结合对CPU486 体系结构的研究,进行通用CPU486 方案设计。根据设计公司对通用CPU486 模拟仿真的结果可知,给CPU486 加复位和时钟信号,若所给复位信号和时钟信号能使CPU 正常复位,CPU 内部翻转的晶体管数可达60%~70%。仅给时钟信号内部翻转的晶体管数目是很少的,这一点从老化电流上就可反映出来,两种情况下其老化电流相差非常大,见图1。在无法进行功能性老化的情况下,采用时钟信号和复位信号进行CPU486 动态老化,可使老化覆盖率达到60~70%,不失为一种有效的工程方法。以CPU486 为例,本课题采用加时钟和复位信号的方式进行动态老化。老化时,在时钟端与复位端加上信号,其它输入端通过一个4.7k?的保护电阻接地或电源,使其有一个固定的状态,输出开路。老化状态可通过地址状态输出端ADS#进行观察,若ADS#端有正常的输出信号,表明其老化状态正常。

  通用CPU 等效老化信号确定

  通用CPU 老化时要同时加上时钟和复位信号,为了使得不同产品在相同的“归一化老化电流”下进行老化,必须确定时钟和复位信号频率对CPU 老化

  本文设计了一系列实验,实验采用了四种不同公司、不同设计、不同工艺,相同封装的几组样品,有关试验样品的具体信息见表1,其中XXX-33 为国内某公司产品。

  采用前面确定的通用CPU 动态老化线路,对表1 列出的四种产品进行了实验。图1 是IntelDX2-66老化电源电流Icc随Reset、CLK 信号频率变化曲线,其他几种产品的实验结果与图1 类似。

  从图1 可以看出不加Reset 信号时老化电源电流远远小于Reset 频率不为0 的情况;Reset 频率在500Hz、1kHz 直到10kHz,IntelDX2-66CPU486 老化电源电流Icc值随CLK 频率变化趋势几乎可以认为是相重合的直线,说明Reset 频率变化对老化不大,而老化电流随CLK 的频率呈线性变化,CLK 频率对老化十分显著。

  图2 是在Reset 频率为10kHz时,四种不同CPU486 老化电流随CLK 频率变化的曲线。从图2 可以方便地得出各款CPU486 的老化电流Icc随CLK 频率变化的斜率。同时从各自的数据手册上可以查出在额定频率下的工作电流值。表2 给出了四种CPU486 老化电流随CLK 频率变化的斜率k 值(为)及额定频率下的工作电流值cc I 。

  设归一化老化电流为α,根据(6)式可分别算出四种CPU486 等效老化的时钟信号频率,具体的计算结果见表3。“归一化老化电流”α的值,主要根据产品的额定功率、热阻、最高及老化设备能力等因素综合确定。α的值取范围为0~1,但α具体取什么值,主要受老化设备能力的限制,老化信号源频率高,可以将“归一化老化电流”α的值取得大一些,但只要所有的同类产品α值相同,老化的相当。但对于功耗特别大的产品,在老化时一定要注意α的取值,使老化时芯片温度小于最高的限制。



评论


相关推荐

技术专区

关闭