新闻中心

EEPW首页 > 汽车电子 > 设计应用 > 863专家谈锂离子动力电池的发展潜力

863专家谈锂离子动力电池的发展潜力

作者:时间:2010-07-22来源:网络收藏
 

  不同于特定容量普遍偏低的正极材料,硅、锡等许多负极材料的电位可以提供更大的容量,特别是硅,其理论容量至少10倍于目前最常用的负极材料石墨。但的嵌入可以导致400%的体积变化,结构很容易因反复充放电遭到破坏,其寿命延长成为一个关键问题。

  研究人员已经在尝试与传统石墨混合以制造空气间隙,从而控制体积膨胀到一定程度,以及与氧化硅或其他材料再混合的石墨,以制造出一种氧化硅-碳(SiO-C)的复合材料。一、两年内,使用这种硅复合负极材料的电池将首先应用在手机中。

  对于电动车来说,组的安全性非常重要。由于负极材料石墨比锂的电位低,因而不可避免地会出现锂沉积在负极界面或电解质形成化合物的问题。

  东芝为此开发出一种锂钛氧化物LTO(Li4Ti5O12)的新型负极材料。LTO比锂的电位高,可避免上面提到的锂沉积或与电解质界面反应的问题,提高了电池的安全性。不过,LTO的电位比锂高出约1.5V,使用现有的正极材料时,电池放电电压将减少至约2.4V。其理论电容与石墨相当,因此电池能量密度的提高有一定程度的限制。

  在采用LTO与5V的正极材料,或者采用它与高容量硅合金复合材料或类似材料,以提高电池放电电压的情况下,电池能量密度很可能至少可以提高到200Wh/kg。

  另外,据王子冬介绍,全球各电池厂商及相关机构正在加紧针对全新类型、能量密度超过500Wh/kg电池的基础研究,如固态电池、锂金属电池、锂硫电池、锂空气电池等,并计划在2030年前后开始推向市场。


图7 电池材料开发的长远目标

  对于全固态电池,日本大阪府立大学一直在研究采用硫化物类固态电解质。例如,加热Li2S-P2S5类玻璃进行结晶化后的电池,其室温下的离子导电率达到10-3S/cm以上,与目前液态电解质的导电率水平相同,而且还可能再提高2~5倍。

  对于仍用有机溶剂,但采用新结构以提高能量密度的锂空气电池,由于其正极上用空气中的氧作为活性物质,因此,理论上正极的容量密度是无限的。此外,当负极使用金属锂时,理论容量可比锂离子电池高一个数量级。日本产业技术综合研究所与日本学术振兴会已开发出这种电池。


图8 新结构的锂空气电池原理示意图

  电池的负极采用金属锂条,电解液组合用的是含有锂盐的有机电解液,正极的水性电解液使用碱性水溶性凝胶,与微细化后的碳和低价氧化物催化剂形成正极组合。

  该电池放电反应生成的不是固体氧化锂(Li2O),而是易溶于水性电解液的氢氧化锂(LiOH)。因此,氧化锂在空气电极堆积后,不会导致工作停止。另外,水及氮等也不会穿过固体电解质隔膜,因此不会出现与负极锂金属发生反应的危险。在配置充电专用的正极时,还可防止充电导致空气电极的腐蚀和老化。

  试验结果表明,以0.1A/g的放电率放电时,放电容量约为9000mAh/g,而此前的锂空气电池放电容量只有700~3000mAh/g。

  另外,若以水溶液代替水溶性凝胶,可在空气中以0.1A/g的放电率放电20天,其放电容量约为50000mAh/g,比原来提高一个数量级。由于金属锂电池的容量本来就比锂离子电池高一个数量级,因此,这一放电容量实际上比锂离子电池高了2个数量级。不过,凝胶的易用性更好些。

  另外,如果不对这种锂空气电池直接充电,而是通过底座更换正极的水性电解液,以卡盒等方式补充负极的金属锂,可缩短电动车的充电时间,更换后即可行驶。通过回收水性电解液重新生成金属锂,可实现锂的循环使用。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭