新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 用于系统级芯片的纳米晶非易失性存储器

用于系统级芯片的纳米晶非易失性存储器

作者:时间:2013-01-04来源:网络收藏

闪存的性能

另一方面,利用硅材料或金属制造的闪存存储器很容易克服氮化物带来的局限性。来自不同公司的研究者都已经能使用可量产的设备来产生可反复制造的硅。这些纳米晶的直径为5~10纳米,可以使用前面在硅浮栅中采用的相同物理机制来充电或放电。由于在每个位元的冗余电荷存储,绝缘材料可以在8~10纳米和5~6纳米之间变化,依然能采用量子力学隧道技术在低电压下擦除。较低的写/擦除电压可以使闪存模块面积更低。而且,因为没有影响浮栅的电容耦合效应,纳米晶位元门槛电压的分布可以比浮栅窄40%,因此可以采用更低的读取电压。


图2:形成的硅纳米晶层的SEM图像。

架构选择

第一款实验性的纳米晶闪存测试芯片采用传统的NOR共源架构(1T),4到24兆位密度,并对电荷保持能力进行了深入的研究。通过采用分离栅结构(1.5T)实现更大的成本降低,在这种架构中,沟道区域由电荷存储区与一个带薄氧化物的选择栅共享,这里的氧化物通常与SoC中的低电压高性能晶体管中用的氧化物相同。在这种位元结构中,在读操作期间只有选择栅被切换,以选择或取消选择存储器阵列中的一个位元,实现快速的读操作。

此外,分离栅架构通过两种方法减小闪存模块面积:首先,1.5T位元将位元的读侧和编程侧分开,允许在数据位线上利用高性能低电压晶体管作为在存储器阵列上的选择晶体管,可以减少非存储器晶体管占用的面积;其次,所有闪存相关的操作,即编程、擦除和读操作都可以使用单极电压来执行,对基于N沟道的闪存用正电压,这样就减少电荷泵站用的硅片面积。基于这些1.5T位单元的阵列设计一直在基于浮栅的存储器中很受欢迎,但是基于纳米晶的1.5T位单元具有额外的优势,可以在电荷存储区之上提供独立的栅控制(控制栅),实现更低密度和更快读取的性能优化。

32纳米可扩展性

将纳米闪存缩小到32纳米以及以下尺寸的关键是获得纳米晶尺寸的高度一致性,以及改善覆盖纳米晶的沉积介电材料的质量。纳米晶尺寸的一致性取决于纳米晶生长参数,可以进行优化获得纳米晶尺寸的紧凑分布。覆盖纳米晶上面的沉积介电材料的质量可以通过采用不同的广为人知的方法来大大地提高,例如高温退火、氮的结合、沉积速度调整等等。对于1.5T器件,将薄的氧化物用于选择栅,通过降低短沟道效应可以帮助缩减到32纳米以及更低。

本文小结

总之,人们将硅纳米晶作为在微控制器中集成非易失性闪存的电荷存储介质进行了研究,现在制造工艺已经足够成熟,重复的纳米晶生长已经不是问题。使用纳米晶实现的优势包括改善可靠性和减小硅片尺寸,这些都使其成为下一代嵌入式微控制器的一个非常具有吸引力的选择。当前的工作是优化满足客户对性能和可靠性要求的阵列架构,以及基于硅纳米晶微控制器的产品化。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭