新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 工业CT技术参数对性能指标的影响

工业CT技术参数对性能指标的影响

作者:时间:2013-04-09来源:网络收藏


用户的使用技术要求显然是整个订购 产品的基点。属于使用技术要求的内容大致有以下方面:

⑴检测对象的大小、形状、重量和材料组成;
⑵基本功能, 包括断层成像(CT)、数字成像(DR)、实时成像(RTR)、和传统胶片照相(FR)。
⑶主要检测目标,包括材料内部缺陷(还应区分缺陷类型,如气孔、夹杂、疏松、裂纹、脱粘等)、材料内部结构(如分析生物材料孔隙率或分布)、零件内部尺寸(如涡轮发动机叶片)、整机或部件内部装配情况。
⑷对这些主要检测目标的要求是,如检测材料内部缺陷,还应提出各种缺陷的检测灵敏度;如检测零件内部尺寸,应提出检测灵敏度和精确度。;
⑸检测工件数量或检测速度要求,检测速度可以进一步考虑扫描时间、图像重建时间、调整切片位置时间、更换检测样品时间。
⑹专门要求。如防爆、必要工装或样品检测姿态,对接触检测对象有无特殊要求,如生物样品或者工件某些位置要避免接触或夹持等。
⑺设备运行和检测结果,包括用户界面、检测结果的提供方式和格式、专门的图像显示及图像后处理要求或专用数据处理软件、资料文档管理和检测报告形式。
⑻放射性剂量和其他安全问题,应当符合国家或行业的有关标准或法规。
⑼预期寿命和维护周期等,尤其应当关注射线源寿命或某些成像器件的辐射损伤。
⑽设备使用条件,如场地、环境温湿度要求,电源负荷及稳定性要求等。

以上都是购买者的基本要求。不过一台 显然还有很多重要的问题,如射线源(加速器还是X 射线机,最大能量、束流强度甚至生产厂家等等)、辐射探测器(类型、闪烁体材料、尺寸、探测单元数量等)、准直器(材料、式样、尺寸等等)、电子电路(如A/D 变换位数、数量、型号等等)、机械扫描系统(加工精度、丝杠导轨等)、扫描电控系统(采用驱动电机或位置传感器的种类或)、计算机硬件(CPU 数量、速度、型号,内存大小等)、计算机软件(重建算法、通讯方式等)。

可能还有许多购买者关心的其他重要问题。这一类主要是涉及设计制造者为满足购买者使用要求应当考虑或选择的技术方案的问题,购买者的任务只是审查设计制造者所选用的技术方案能否“适应”希望达到的目标。但是有时购买者为了保证最终产品的质量,事先对上述这一类内容作了许多限定,替制造者完成了不少具体设计,可是这样做的结果很可能事与愿违,甚至对系统设计带来负面影响。应当说一般的购买者并不具备设计CT系统的能力,他们的设计往往是东拼西凑某些厂商的技术方案而成的,并不一定是最适合于实际检测任务要求的技术方案。在这些问题上应当留给设计制造者一些空间,发挥他们的创造性,而不要让设计者的工作仅仅变成一个简单的加工过程。购买者如果特别关注某些部件,完全有可能把这些关注转化成对于产品性能的要求,合理地向制造者提出。归根到底购买的是一台设备,而不是某一公司的某种零件或部件,即便是这些部件何等关键或重要,也一定能在总体性能上体现出来。购买者要更多关注的应该是设计制造者是怎样通过具体技术方案来满足用户对产品性能的要求,如果达到这些要求的道路不止一条,下面的任务就是全面地判断它们的优劣,决定取舍。

验收工作也是非常复杂的,这是因为CT 产品的各项技术指标的测定本身比较复杂。应当在购买者和提供者最初签订合同时给于足够细致的考虑才能减少最后的麻烦。

作为使用者显然最希望用实际的缺陷(假定用户的CT 系统主要检测目标是材料内部缺陷)来检验系统的能力,也可以肯定地说这是最好的检验方法,在可能时应当尽量采用接近实际的试样检测实际的缺陷。然而完全与实际缺陷一致的标准样品实际上往往很难制作,很多情况下制作的带有缺陷的“标准样品”与实际情况相差甚远,检测结果仅有参考意义。另一方面,相对说来被典型化的技术指标——如空间分辨率和密度分辨率还更加能够比较客观地反映CT 系统的真实性能,更容易比较出 产品性能的优劣。虽然国内外关于工业CT 的空间分辨率和密度分辨率的测定方法都还没有强制性的标准,但是有一些已被业内普遍认可的方法应当优先选用,这些方法有的被列为企业内部标准,有的被列为被标准推荐的方法。例如,测定CT 的空间分辨率采用均匀圆盘或线对测试卡的MTF 方法,测定CT 的密度分辨率采用均匀圆盘的CDF 函数法、固体或液体密度差试件和利用部分体积效应的空气隙试块法等。上述种种方法虽然可能没有简单的对应关系,测试结果也不一定完全一致,但不是相互排斥的。可以在合同中选定一种或几种验收方法,同时应当规定具体测试条件,使得供求双方对产品技术指标达成真正的共识。

还有一些经验的方法可以参考[11]。例如,检测主要目标在于发现夹杂等细小(如4 个像素)的高对比度缺陷,在背景均匀的情况下,其图像对比度只要高于单个像素平均噪声5~6 倍就可以被识别。如果感兴趣区内图像噪声水平是2%,小的缺陷至少要有大约10%的对比度才能被识别。再假定检测主要目标在于鉴别大面积(如400 个像素)的微小辐射密度变化,在背景均匀的情况下,可以识别的密度变化等于3 倍单个像素平均噪声除以像素数的平方根。如果感兴趣区内图像噪声水平还是2%,上述面积内0.3%(= 3* 2%/ 400 )的密度变化可以被识别。从上面的实例可以更进一步了解到一台工业CT 的检测能力与系统噪声的关系是多么密切。作为参考,有人这样来评价CT 系统的优劣,图像噪声水平低于1%的为优,图像噪声水平等于2~4%的为好,图像噪声水平等于5%的算中等,图像噪声水平大于10%的为差。

因为CT 是一种包含复杂技术的产品,而且大体上是非标准产品。所以选购CT 与普通商品有一个较大的区别就是要在性能——价格的平衡问题上给予更多关注。购买者首先应当在以下几个选择中确定自己的目标:性能最好的、价格最贵的、最适合使用的或者最新奇有创意的。如果我们打算选购一台最适合使用的工业CT 设备,那么就要注意避免陷入以下常见的几个误区。

最常见的就是“贪大求高”。不少用户总希望CT 系统能够检测尽可能大的样品,或者考虑到以后可能的发展,提出的最大检测工件尺寸远远大于主要或经常需要检测的工件尺寸。购买者应当意识到,尺寸的加大一般都要带来成本的提高,购买者也应当明白这种增加的成本归根到底都是由购买者自己来承担的;购买者往往不大容易意识到的是:检测工件尺寸的增大总是要以技术指标的下降为代价的。

首先考虑一下空间的布置。容易理解,在射线源对于样品的使用张角α 固定的条件下,样品越大,只能放得越远;射线源到旋转中心距离越大,射线源到探测器的距离也越大。射线源到探测器的最小距离

newmaker.com

式中 R ——CT 成像范围半径(检测工件大小)
S ——射线源到旋转中心距离
计算出各种张角条件下射线源到探测器的最小距离与样品半径的关系,结果如图5 所示。

newmaker.com
图5 射线源到探测器的最小距离与样品半径的关系

射线源到探测器的距离基本上随样品尺寸线性增加。前面已经分析过,射线源到探测器的距离的增加将导致系统优良度下降。如果采用二代扫描方式,有可能不增加射线源到探测器的距离,但是也要改变系统几何条件,一般会引起空间分辨率的降低,在此不再详细分析。

“求高”就是追求高的技术指标也是一种倾向。且不说很多过高的指标目前国内外的技术都根本达不到,就算可以做到,也必然带来成本的增加。例如机械加工的精度提高到一定程度以后,再继续提高将带来成本大幅度增加。订购CT 产品时一定要事前在性能和费用之间考虑折中,这里包括各部件之间性能费用的折中,一般情况下某一部件费用的提升必然带来其他部件费用的紧缩。

有一种倾向是离开实际需要,片面追求个别的高指标更为有害,最典型的就是片面追求高空间分辨率。前面已经分析过,空间分辨率,密度分辨率和一个断层图像的平均产生时间这三项技术指标是互相制约的,一项指标的提高可能带来其他指标的降低。对于空间分辨率也有一个认识上的误区。有人以为探测器越小空间分辨率就一定更高,探测器数量越多系统越先进。这就使有些本来不适合使用面探测器,尤其是半导体芯片探测器的场合使用了这些探测器,不仅影响了总体性能,空间分辨率也没有达到预想的结果。看起来上面的说法似乎不合逻辑,在这里值得注意的是理论空间分辨率的极限与实际系统在特定条件下空间分辨率并不永远有良好的对应关系。如前面已经分析过的,决定系统理论空间分辨率的因素并不仅仅探测器宽度一项,还有别的因素;同时任何实际的测量都是在存在系统噪声的条件下进行的,探测器越小通常带来的是信噪比低,可以想象淹没在噪声中的图像如何分辨细节呢?这样上面的结论在很多实际情况下就合乎逻辑了。为了帮助理解这个问题,我们还可以数码相机为例,一般说来相机好坏主要看镜头质量和芯片尺寸大小,并不简单地是像素越多相机就越好;一般情况下在像素数目相同时,芯片尺寸越大越贵,也就是单个成像单元尺寸越大越好。毫无疑问,最后照片的清晰度是照相机的价格和质量的最基本因素。

第二个误区在于对现有工业CT 能力的了解不够。虽然工业CT 的历史与医用CT 的历史相差不多,由于工业CT 实际应用的多样性和复杂性,加上两种CT 投入的研究力量和资金总量对比悬殊,工业CT 还远没有医用CT成熟。目前工业CT 的应用还比较有限,只是在某些领域取得了很成功的应用,至于在一些有潜力而其他检测方法无能为力的领域则还要不断努力才能取得新的突破。

另外要意识到对于工业CT 设备,不可能在一次检测中或一种工作条件下,使空间分辨率,密度分辨率和断层图像产生时间这三项技术指标上同时达到该设备的最高指标。由于工业CT 的很多技术指标是随测试条件变化的,设备说明书给出的技术指标都是在特定的测试条件或买卖双方所协商一致的条件下得到的,并不是任何条件下一成不变的。比起设备说明给出的指标,样品实际指标有的会高一些,有的会低一些;甚至对于同一样品,选用不同测试参数结果也不尽相同。例如,同一设备检测较大的样品得到的“绝对”技术指标就会比检测较小的样品时低一些,用检测小样品的要求检测大样品是不现实的,这是由物理学或数学等客观存在的自然规律所决定的。从使用的角度考虑人们更应关心的是接近于实际使用时的技术指标;同时也应当优先接受公认的一些标准测试条件,便于对不同设备进行性能比较。要避免简单地从孤立的个别数字上判断系统的优劣。总的说来,在考察生产厂家提供的CT 图像时,应当特别注意测试设备型号和技术条件。在这里特别希望提醒用户们注意近年来国内许多厂家,也包括一些国外公司提出的技术指标已经远远高于技术上在国际领先的某些美国著名企业的事实。如果确实如此当然是大好事,但是用户还是应当从技术上考察一下支持这些指标的技术基础。至于有的厂商把不是同一种工作条件下,甚至不是同一台设备测得的技术指标或图像放在一起,不加说明,鱼目混珠,属于商业利益驱动有意误导用户的行为,千万不要上当。

还有一个对于三维图像的认识问题。应当说CT 从二维图像向三维发展是一个方向。在螺旋和多层CT 出现以后,尤其是医学领域,无论在三维图像数据获取还是三维图像的利用方面都取得很大成就。近年来工业CT 对三维的关注显然也大大增加,也取得了明显的进展。不少地方提出“反向工程” 技术或“先进制造”等概念,如果能够实现绝对是意义重大的。然而分析一下医学领域和工业应用的特点,就会发现一些问题。医学诊断关心的尺度在mm 量级,而工业应用往往要求到0.01mm 量级,甚至μm 量级;从医学诊断的目标来说最大的就是人体,而工业应用的对象一般都是100 mm 量级或者更大。仅数据量这一点就可以看出两者相差好几个量级,工业领域的难度可想而知。所以说 “反向工程”等问题在目前还只有演示意义。在三维领域已经取得的成就似乎有:对较轻材料的检测对象,用面探测器进行三维直接重建,可以大大缩短成像平均时间;或者进行三维图像的各种立体演示,或某种程度的内部缺陷检测,虽然由于面探测器固有的缺点,图像质量可能受到某些限制;也可进行部件的内部装配情况显示等。目前还有模仿医用螺旋CT 原理研制安检应用的三维CT 的工作,希望未来在查毒和危险品方面得到应用等。综上所述,工业CT 仍在不断发展,用户应当考虑本身实际需要提出适当的要求。

因为工业CT 的检测比较费时,在实际操作中往往不可能作到“无遗漏”的检测。而数字化照相即DR 的检测速度快得多,于是出现了一种说法:先用DR 检测样品,发现缺陷或可疑处再用CT 检测。这种说法不够确切。用DR 发现缺陷或可疑后再用CT 检测,固然可以更进一步精确地测定缺陷的位置和性质。但是DR 并不能发现全部CT 可能发现的缺陷,也不能给出辐射密度的精确数值从而发现材料中密度的微小变化。如果不是这样,CT存在的价值就值得怀疑了。

最后一个问题就是扫描方式的选择,前面已经对平移—旋转(TR)方式和只旋转(RO)方式的扫描方式做了一些分析。应当指出,认为只旋转(RO)方式要比平移—旋转(TR)方式先进的看法可能也是认识上的一个误区。暂且不说TR 方式能从根本上消除RO 方式难以避免的年轮状伪像,比较适合于园对称的回转体的检测,也不说探测器数量显著减少带来的成本降低和容易维护,就是对一般认为属于RO 方式优点的射线利用率高也要做具体分析。对于一个样品尺寸变化范围大的CT 系统,在检测小样品时,大部分探测器获取的数据是无用的,射线利用率大打折扣。同时由于只利用了少量探测器,有可能引起正弦图上位移方向数据量不足。虽然可以用探测器微动的方法插值做一些补救,但是RO 扫描方式检测速度快的优势就要大打折扣。此外,为了控制探测器的数量并保证最佳的几何条件,只旋转(RO)方式的射线源到旋转中心的距离要比平移—旋转(TR)方式大,又使CT 系统的优良度有所降低。综上所述,孰优孰劣还是要具体问题具体分析。

总之,选购工业CT 产品时一定要从实际需要出发,尽可能加深对工业CT 的理解,了解各个组成部分的作用以及具体怎样影响到CT 产品的。这样才可以减少盲目性,加强科学性,促使我国工业CT 的应用更加健康顺利地发展。(end)
全息投影相关文章:全息投影原理

上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭